我有一个自己实现的自定义估计器,但无法使用,我相信这与我的方法cross_val_score()有关。predict()这是完整的错误跟踪:
Traceback (most recent call last):
File "/Users/joann/Desktop/Implementações ML/Adaboost Classifier/test.py", line 30, in <module>
ada2_score = cross_val_score(ada_2, X, y, cv=5)
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 390, in cross_val_score
error_score=error_score)
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/sklearn/model_selection/_validation.py", line 236, in cross_validate
for train, test in cv.split(X, y, groups))
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 1004, in __call__
if self.dispatch_one_batch(iterator):
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 835, in dispatch_one_batch
self._dispatch(tasks)
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 754, in _dispatch
job = self._backend.apply_async(batch, callback=cb)
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 209, in apply_async
result = ImmediateResult(func)
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 590, in __init__
self.results = batch()
File "/Users/joann/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 256, in __call__
for func, args, kwargs in self.items]
我的predict(self, X)
方法返回一个大小向量n_samples
以及参数的预测X
。我还做了一个score()
功能如下:
def score(self, X, y): scr_pred = self.predict(X) return sum(scr_pred == y) / X.shape[0]
该方法只是计算给定样本的模型的准确性。如果我使用此score()
方法或设置 across_val_score(... , scoring="accuracy")
它不起作用。
有只小跳蛙
相关分类