我正在使用线性 SVC 进行一些面部识别训练,我的数据集是 870x22。我有 29 个不同的人的 30 帧,我在图像中使用 22 个简单值像素来识别面部图像,说 22 个像素是我的特征。此外,当我调用 train_test_split() 时,它会给我一个大小为 218x22 的 X_test 和大小为 218 的 y_test。一旦我训练了分类器并尝试运行新面孔 (30x22) 矩阵的图像,它就会给我错误:
ValueError: Found input variables with inconsistent numbers of samples: [218, 30]
这是代码:
import sklearn
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.svm import SVC
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score, f1_score
img_amount = 30
target = np.asarray([1]*img_amount + [2]*img_amount + [3]*img_amount + [4]*img_amount + [5]*img_amount + [6]*img_amount + [7]*img_amount + [8]*img_amount + [9]*img_amount + [10]*img_amount + [11]*img_amount + [12]*img_amount + [13]*img_amount + [14]*img_amount + [15]*img_amount + [16]*img_amount + [17]*img_amount + [18]*img_amount + [19]*img_amount + [20]*img_amount + [21]*img_amount + [22]*img_amount + [23]*img_amount + [24]*img_amount + [25]*img_amount + [26]*img_amount + [27]*img_amount + [28]*img_amount + [29]*img_amount)
dataset= dataset[:, 0:22]
svc_1 = SVC(kernel='linear', C=0.00005)
X_train, X_test, y_train, y_test = train_test_split( dataset, target, test_size=0.25, random_state=0)
def train(clf, X_train, X_test, y_train, y_test):
clf.fit(X_train, y_train)
print ("Accuracy on training set:")
print (clf.score(X_train, y_train))
print ("Accuracy on testing set:")
print (clf.score(X_test, y_test))
y_pred = clf.predict(X_test)
print ("Classification Report:")
print (metrics.classification_report(y_test, y_pred))
print ("Confusion Matrix:")
print (metrics.confusion_matrix(y_test, y_pred))
LEATH
相关分类