猿问

如何在 Pytorch 中创建自定义数据加载器?

我有一个包含图像路径的文件,我想加载到 Pytorch 中,同时利用内置的数据加载器功能(多进程加载管道、数据扩充等)。


def create_links():

    data_dir = "/myfolder"


    full_path_list = []

    assert os.path.isdir(data_dir)

    for _, _, filenames in os.walk(data_dir):

        for filename in filenames:

            full_path_list.append(os.path.join(data_dir, filename))


    with open(config.data.links_file, 'w+') as links_file:

        for full_path in full_path_list:

            links_file.write(f"{full_path}\n")



def read_links_file_to_list():

    config = ConfigProvider.config()

    links_file_path = config.data.links_file

    if not os.path.isfile(links_file_path):

        raise RuntimeError("did you forget to create a file with links to images? Try using 'create_links()'")

    with open(links_file_path, 'r') as links_file:

        return links_file.readlines()

所以我有一个文件列表(或一个生成器,或任何有效的东西)file_list = read_links_file_to_list(),.


我如何围绕它构建一个 Pytorch 数据加载器,我将如何使用它?


MMMHUHU
浏览 109回答 1
1回答

MYYA

你想要的是一个Custom Dataset。该__getitem__方法是您应用数据增强等转换的地方。为了让您了解它在实践中的样子,您可以看看我前几天写的这个自定义数据集:class GTSR43Dataset(Dataset):    """German Traffic Sign Recognition dataset."""    def __init__(self, root_dir, train_file, transform=None):        self.root_dir = root_dir        self.train_file_path = train_file        self.label_df = pd.read_csv(os.path.join(self.root_dir, self.train_file_path))        self.transform = transform        self.classes = list(self.label_df['ClassId'].unique())    def __getitem__(self, idx):        """Return (image, target) after resize and preprocessing."""        img = os.path.join(self.root_dir, self.label_df.iloc[idx, 7])                X = Image.open(img)        y = self.class_to_index(self.label_df.iloc[idx, 6])        if self.transform:            X = self.transform(X)        return X, y        def class_to_index(self, class_name):        """Returns the index of a given class."""        return self.classes.index(class_name)        def index_to_class(self, class_index):        """Returns the class of a given index."""        return self.classes[class_index]         def get_class_count(self):        """Return a list of label occurences"""        cls_count = dict(self.label_df.ClassId.value_counts())#         cls_percent = list(map(lambda x: (1 - x / sum(cls_count)), cls_count))        return cls_count        def __len__(self):        """Returns the length of the dataset."""        return len(self.label_df)
随时随地看视频慕课网APP

相关分类

Python
我要回答