例如,我有以下格式的数据文本:
HEADER NODE DATA, AIR
-10000, 15., -1.0
HEADER CONDUCTOR DATA, AIR
1, AIR.10000, S25D.1, 56.84441 $ AIR CONV
2, AIR.10000, S25D.2, 56.45712 $ AIR CONV
3, AIR.10000, S25D.3, 53.35623 $ AIR CONV
4, AIR.10000, S25D.4, 45.09633 $ AIR CONV
5, AIR.10000, S25D.9, 77.00067 $ AIR CONV
6, AIR.10000, S25D.10, 80.35013 $ AIR CONV
7, AIR.10000, S25D.11, 50.4933 $ AIR CONV
8, AIR.10000, S25D.12, 91.61026 $ AIR CONV
9, AIR.10000, S25D.13, 53.75025 $ AIR CONV
10, AIR.10000, S25D.14, 75.68577 $ AIR CONV
11, AIR.10000, S25D.15, 110.0111 $ AIR CONV
12, AIR.10000, S25D.16, 114.7913 $ AIR CONV
13, AIR.10000, S25D.17, 81.12207 $ AIR CONV
14, AIR.10000, S25D.18, 72.80061 $ AIR CONV
15, AIR.10000, S25D.19, 72.21327 $ AIR CONV
16, AIR.10000, S25D.20, 90.99183 $ AIR CONV
17, AIR.10000, S25D.21, 66.35648 $ AIR CONV
18, AIR.10000, S25D.22, 76.9787 $ AIR CONV
19, AIR.10000, S25D.23, 52.46601 $ AIR CONV
20, AIR.10000, S25D.24, 68.30105 $ AIR CONV
21, AIR.10000, S25D.25, 114.0903 $ AIR CONV
22, AIR.10000, S25D.26, 70.51425 $ AIR CONV
23, AIR.10000, S25D.27, 36.39104 $ AIR CONV
我想将其读入熊猫数据框以进行进一步分析。如您所见,每个子集的标题和数据格式都不同。我想使用 re 模块和 pandas 将数据读入框架,但不知道如何以最有效的方式进行。此外,您可以看到 AIR 字符串对两个标头都是通用的。在完整文件中会有更多这样的字符串,所以我想为每个字符串创建一个类,其属性(节点,导体)将是一个带有相应数据的 pd 数据框。
12345678_0001
相关分类