所以我从以下 csv 创建了一个 pandas 数据框:
id age00 education marital gender ethnic industry income00
0 51.965 17 0 1 0 5 76110
1 41.807 12 1 0 0 1 43216
2 36.331 12 1 0 1 3 52118
3 56.758 9 1 1 2 2 47770
我的目标是创建一个名为future_income的新列,它获取每一行并使用我的模型计算未来收入。
这是由我在下面创建的类中的predictFinalIncome变量完成的:
class myModel:
def __init__(self, bias) :
self.bias = bias # bias is a dictionary with info to set bias on the gender function and the ethnic function
def b_gender(self, gender):
effect = 0
if (self.bias["gender"]): # if there is gender bias in this model/world (from the constructor)
effect = -0.0005 if (gender<1) else 0.0005 # This amount to 1.2% difference annually
return self.scale * effect
def b_ethnic(self, ethnic):
effect = 0
if (self.bias["ethnic"]): # if there is ethnic bias in this model/world (from the constructor)
effect = -0.0007 if (ethnic < 1) else -0.0003 if (ethnic < 2) else 0.0005
return self.scale * effect
# other methods/functions
def predictGrowthFactor( self, person ): # edited
factor = 1 + person['education'] + person['marital'] + person['income'] + person['industry']
return factor
def predictIncome( self, person ): # perdict the new income one MONTH later. (At least on average, each month the income grows.)
return person['income']*self.predictGrowthFactor( person )
def predictFinalIncome( self, n, person ):
n_income = self.predictIncome( person )
for i in range(n):
n_income = n_income * i
return n_income
在这种情况下,n 是 120。
所以简而言之。我想取出每一行,将其放入名为predictFinalIncome的类函数中,并在我的 df 上有一个名为 future_income 的新变量,这是他们在 120 个月内的收入。
萧十郎
相关分类