我想知道为什么我的神经网络不起作用。我想说我对此提出了类似的问题,但我仍然有一些我不明白的事情......
代码:
import numpy as np
inputs = np.array([
[[0],[0]],
[[1],[0]],
[[0],[1]],
[[1],[1]]
])
expected_output = np.array([
[0],
[1],
[1],
[0]
])
epochs = 100
lr = 0.2
hidden_weights = np.array([
[0.2, 0.3],
[0.4, 0.5]
])
hidden_bias = np.array([[0.3], [0.6]])
output_weights = np.array([[0.6, 0.7]])
output_bias = np.array([[0.5]])
def sigmoid(z):
return 1/(1+np.exp(-z))
def sigmoid_derivative(z):
return z * (1.0-z)
for _ in range(epochs):
for index, input in enumerate(inputs):
hidden_layer_activation = np.dot(hidden_weights, input)
hidden_layer_activation += hidden_bias
hidden_layer_output = sigmoid(hidden_layer_activation)
output_layer_activation = np.dot(output_weights, hidden_layer_output)
output_layer_activation += output_bias
predicted_output = sigmoid(output_layer_activation)
#Backpropagation
output_errors = expected_output[index] - predicted_output
hidden_errors = output_weights.T.dot(output_errors)
d_predicted_output = output_errors * sigmoid_derivative(predicted_output)
d_hidden_layer = hidden_errors * sigmoid_derivative(hidden_layer_output)
output_weights += np.dot(d_predicted_output, hidden_layer_output.T) * lr
hidden_weights += np.dot(d_hidden_layer, input.T) * lr
output_bias += np.sum(d_predicted_output) * lr
hidden_bias += np.sum(d_hidden_layer) * lr
# NOW THE TESTING,I pass 2 input neurons. One with value 1 and value 1
test = np.array([
[[1], [1]]
])
我已经测试了前馈传播,它工作正常。错误似乎很好。
我认为更新权重是问题,但更新权重有正确的公式。这段代码来自《制作你自己的神经网络》一书,它与我使用的几乎相同:
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 final_outputs)), numpy.transpose(hidden_outputs))
目前我当时只转发 2 个神经元的 1 个输入并计算错误。我非常希望它保持这种状态,而不是一遍又一遍地转发整个测试数据。
有什么办法可以做到吗?先感谢您 :)
红糖糍粑
相关分类