我正在玩张量流2。我做了我自己的模型,类似于这里的做法。
然后我创建了自己的拟合函数。现在我得到了有史以来最奇怪的事情。以下是我进行测试的笔记本的精确复制/粘贴输出:
def fit(x_train, y_train, learning_rate=0.01, epochs=10, batch_size=100, normal=True, verbose=True, display_freq=100):
if normal:
x_train = normalize(x_train) # TODO: This normalize could be a bit different for each and be bad.
num_tr_iter = int(len(y_train) / batch_size) # Number of training iterations in each epoch
if verbose:
print("Starting training...")
for epoch in range(epochs):
# Randomly shuffle the training data at the beginning of each epoch
x_train, y_train = randomize(x_train, y_train)
for iteration in range(num_tr_iter):
# Get the batch
start = iteration * batch_size
end = (iteration + 1) * batch_size
x_batch, y_batch = get_next_batch(x_train, y_train, start, end)
# Run optimization op (backpropagation)
# import pdb; pdb.set_trace()
if verbose and (epoch * batch_size + iteration) % display_freq == 0:
current_loss = _apply_loss(y_train, model(x_train, training=True))
current_acc = evaluate_accuracy(x_train, y_train)
print("Epoch: {0}/{1}; batch {2}/{3}; loss: {4:.4f}; accuracy: {5:.2f} %"
.format(epoch, epochs, iteration, num_tr_iter, current_loss, current_acc*100))
train_step(x_batch, y_batch, learning_rate)
current_loss = _apply_loss(y_train, model(x_train, training=True))
current_acc = evaluate_accuracy(x_train, y_train)
print("End: loss: {0:.4f}; accuracy: {1:.2f} %".format(current_loss, current_acc*100))
import logging
logging.getLogger('tensorflow').disabled = True
fit(x_train, y_train)
current_loss = _apply_loss(y_train, model(x_train, training=True))
current_acc = evaluate_accuracy(x_train, y_train)
print("End: loss: {0:.4f}; accuracy: {1:.2f} %".format(current_loss, current_acc*100))
现在我的问题是,我如何在最后2行上得到不同的值!?我在做同样的事情对吧?我在这里完全困惑。我甚至不知道如何谷歌这个。
慕桂英4014372
相关分类