我创建了一个自定义 Keras 层。该模型编译得很好,但在训练时给了我以下错误:
ValueError:一个操作有None梯度。请确保您的所有操作都定义了渐变(即可微分)。没有梯度的常见操作:K.argmax、K.round、K.eval。
我的自定义层中是否有任何实现错误?
class SpatialLayer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(SpatialLayer, self).__init__(**kwargs)
def build(self, input_shape):
self.bias = None
self.built = True
self.kernelA = self.add_weight(name='kernelA', shape=(input_shape[1]-2, self.output_dim), initializer='uniform', trainable=True)
def compute_output_shape(self, input_shape):
return (input_shape[0], input_shape[1]-2, input_shape[1]-2, self.output_dim)
def call(self, inputs):
x_shape = tf.shape(inputs)
top_values, top_indices = tf.nn.top_k(tf.reshape(inputs, (-1,)), 10, sorted=True,)
top_indices = tf.stack(((top_indices // x_shape[1]), (top_indices % x_shape[1])), -1)
top_indices = tf.cast(top_indices, dtype=tf.float32)
t1 = tf.reshape(top_indices, (1,10,2))
t2 = tf.reshape(top_indices, (10,1,2))
result = tf.norm(t1-t2, ord='euclidean', axis=2)
x = tf.placeholder(tf.float32, shape=[None, 10, 10, 1])
tensor_zeros = tf.zeros_like(x)
matrix = tensor_zeros + result
return K.dot(matrix, self.kernelA)
model = applications.VGG16(weights = "imagenet", include_top=False, input_shape = (img_width, img_height, 3))
model.layers.pop()
new_custom_layers = model.layers[-1].output
model.layers[-1].trainable = False
new_custom_layers = Conv2D(filters=1, kernel_size=(3, 3))(new_custom_layers)
new_custom_layers = SpatialLayer(output_dim=1)(new_custom_layers)
new_custom_layers = Flatten()(new_custom_layers)
new_custom_layers = Dense(1024, activation="relu")(new_custom_layers)
new_custom_layers = Dropout(0.5)(new_custom_layers)
new_custom_layers = Dense(1024, activation="relu")(new_custom_layers)
任何帮助,将不胜感激。
FFIVE
相关分类