请尝试给出参数化解决方案(有三个以上的选择)。
我有一个带有 beta 值的字典:
{'B_X1': 2.0, 'B_X2': -3.0}
而这个数据框:
X1_123 X1_456 X1_789 X2_123 X2_456 X2_789
6.75 4.69 9.59 5.52 9.69 7.40
7.46 4.94 3.01 1.78 1.38 4.68
2.05 7.30 4.08 7.02 8.24 8.49
5.60 7.88 8.11 5.98 4.60 1.39
1.80 8.28 9.16 7.34 7.69 6.16
3.73 6.93 8.93 2.58 3.48 6.04
8.06 8.88 7.06 6.76 4.68 7.82
5.00 7.29 5.86 3.92 5.67 4.10
2.49 2.55 4.66 7.15 6.26 7.87
1.50 3.35 5.70 9.86 4.83 1.17
8.19 7.72 9.56 6.61 4.15 3.64
2.43 9.54 9.15 4.41 9.18 7.85
2.71 3.24 4.56 6.22 7.89 9.93
5.96 4.34 5.26 8.63 9.81 9.40
123, 456, 和789是备选方案。
我想使用这个公式计算预测概率:
j, k, 和s是提到的替代方案。
预期结果:
X1_123 X1_456 X1_789 X2_123 X2_456 X2_789 P_123 P_456 P_789
6.75 4.69 9.59 5.52 9.69 7.40 0.490 0.000 0.510
7.46 4.94 3.01 1.78 1.38 4.68 0.979 0.021 0.000
2.05 7.30 4.08 7.02 8.24 8.49 0.001 0.998 0.001
5.60 7.88 8.11 5.98 4.60 1.39 0.000 0.000 1.000
1.80 8.28 9.16 7.34 7.69 6.16 0.000 0.002 0.998
3.73 6.93 8.93 2.58 3.48 6.04 0.024 0.952 0.024
8.06 8.88 7.06 6.76 4.68 7.82 0.000 1.000 0.000
5.00 7.29 5.86 3.92 5.67 4.10 0.210 0.107 0.683
2.49 2.55 4.66 7.15 6.26 7.87 0.038 0.623 0.339
1.50 3.35 5.70 9.86 4.83 1.17 0.000 0.000 1.000
8.19 7.72 9.56 6.61 4.15 3.64 0.000 0.005 0.995
2.43 9.54 9.15 4.41 9.18 7.85 0.041 0.037 0.922
2.71 3.24 4.56 6.22 7.89 9.93 0.981 0.019 0.001
5.96 4.34 5.26 8.63 9.81 9.40 0.975 0.001 0.024
每行的概率总和应该为 1。
请尝试给出参数化解决方案(有三个以上的选择)。
森栏
相关分类