猿问

用零填充行其他列有一些值,否则其他列没有值在python pandas中用NaN填充

我有如下数据框


import pandas as pd

import numpy as np


k={'ID':[1,2,3,4,5,6],'m1':[20,'',30,40,50,60],

   'm2':['',40,40,90,'',''],

   'm3':['','','','','',''],

   'm4':['','','','','',''],

   'm5':['','','','',1,''],

   'm6':[10,'','',90,'','']}


df=pd.DataFrame(data=k)

我们检查了同一行的其他行中是否有任何退出值,然后我们需要用零填充它,或者其他确实包含我们必须填充的任何值,NAN


我的结果显示如下


ID  m1  m2  m3  m4  m5  m6

1   20  0.0 0.0 0.0 0.0 10.0 # first row and last row has value some vale so  we have fill it Zero others rows  

2   0   40.0    NaN NaN NaN NaN  # there are no value after the second row we have will it with NAN

3   30  40.0    NaN NaN NaN NaN  # there are no value after the second row we have will it with NAN

4   40  90.0    0.0 0.0 0.0 90.0 # first row,second row  and last row has some value so we have fill it Zero to other rows  

5   50  0.0 0.0 0.0 1.0 NaN   # first row,and fifth row has some value so we have fill it Zero to other rows and last row with Nan  

6   60  NaN NaN NaN NaN NaN # there are no value after the first row we have will it with NAN




喵喔喔
浏览 87回答 1
1回答

缥缈止盈

让我们bfill尝试masks=df.iloc[:,1:]df.iloc[:,1:]=s.mask(s.mask(s=='').bfill(1).notna()&(s==''),0)df   ID  m1  m2 m3 m4 m5  m60   1  20   0  0  0  0  101   2   0  40             2   3  30  40             3   4  40  90  0  0  0  904   5  50   0  0  0  1    5   6  60             
随时随地看视频慕课网APP

相关分类

Python
我要回答