小唯快跑啊
我最终修改了 Severin 的解决方案以更好地满足我的需求,所以我想我在这里分享它,以防有人遇到同样的问题。我做了什么:替换Categorical为基于Random类的自己的代码,因为Categorical这给我带来了奇怪的结果。改变了概率的计算方式。添加了更多统计数据。要更改的关键参数是ratio:最小值为 1.0,这使得它的行为就像一个随机数生成器值越高,它就越类似于洗牌算法,因此可以保证数字在不久的将来出现并且不会重复。订单仍然不可预测。比率 1.0 的结果:这就像伪随机数生成一样。3, 5, 3, 3, 3, 3, 0, 3, 3, 5, 5, 5, 2, 1, 3, 5, 3, 3, 2, 3, 1, 0, 4, 1, 5, 1, 3, 5, 1, 5, -Number of occurences:2521218Max occurences in a row:111413Max length where this number did not occur:1413126228比率 5.0 的结果我最喜欢的。很好的分布,偶尔的重复,没有那么长的间隔没有发生一些数字。4, 1, 5, 3, 2, 5, 0, 0, 1, 3, 2, 4, 2, 1, 5, 0, 4, 3, 1, 4, 0, 2, 4, 3, 5, 5, 2, 4, 0, 1, -Number of occurences:555465Max occurences in a row:211112Max length where this number did not occur:71087109比率 1000.0 的结果分布非常均匀,但仍然带有一些随机性。4, 5, 2, 0, 3, 1, 4, 0, 1, 5, 2, 3, 4, 3, 0, 2, 5, 1, 4, 2, 5, 1, 3, 0, 2, 4, 5, 0, 3, 1, -Number of occurences:555555Max occurences in a row:111111Max length where this number did not occur:887867代码:using System;using System.Linq;namespace EqualizedSampling{ class Program { static Random rnd = new Random(DateTime.Now.Millisecond); /// <summary> /// Returns a random int number from [0 .. numNumbers-1] range using probabilities. /// Probabilities have to add up to 1. /// </summary> static int Sample(int numNumbers, double[] probabilities) { // probabilities have to add up to 1 double r = rnd.NextDouble(); double sum = 0.0; for (int i = 0; i < numNumbers; i++) { sum = sum + probabilities[i]; if (sum > r) return i; } return numNumbers - 1; } static void Main(string[] args) { const int numNumbers = 6; const int numSamples = 30; // low ratio makes everything behave more random // min is 1.0 which makes things behave like a random number generator. // higher ratio makes number selection more "natural" double ratio = 5.0; double[] probabilities = new double[numNumbers]; int[] counter = new int[numNumbers]; // how many times number occured int[] maxRepeat = new int[numNumbers]; // how many times in a row this number (max) int[] maxDistance = new int[numNumbers]; // how many samples happened without this number (max) int[] lastOccurence = new int[numNumbers]; // last time this number happened // init for (int i = 0; i < numNumbers; i++) { counter[i] = 0; maxRepeat[i] = 0; probabilities[i] = 1.0 / numNumbers; lastOccurence[i] = -1; } int prev = -1; int numRepeats = 1; for (int k = 0; k < numSamples; k++) { // sample next number //var cat = new Categorical(probabilities); //var q = cat.Sample(); var q = Sample(numNumbers, probabilities); Console.Write($"{q}, "); // affect probability of the selected number probabilities[q] /= ratio; // rescale all probabilities so they add up to 1 double sumProbabilities = 0; probabilities.ToList().ForEach(d => sumProbabilities += d); for (int i = 0; i < numNumbers; i++) probabilities[i] /= sumProbabilities; // gather statistics counter[q] += 1; numRepeats = q == prev ? numRepeats + 1 : 1; maxRepeat[q] = Math.Max(maxRepeat[q], numRepeats); lastOccurence[q] = k; for (int i = 0; i < numNumbers; i++) maxDistance[i] = Math.Max(maxDistance[i], k - lastOccurence[i]); prev = q; } Console.WriteLine("-\n"); Console.WriteLine("Number of occurences:"); counter.ToList().ForEach(Console.WriteLine); Console.WriteLine(); Console.WriteLine("Max occurences in a row:"); maxRepeat.ToList().ForEach(Console.WriteLine); Console.WriteLine(); Console.WriteLine("Max length where this number did not occur:"); maxDistance.ToList().ForEach(Console.WriteLine); Console.ReadLine(); } }}