我有一个用于序列预测的 Lstm 模型,如下所示:
def create_model(max_sequence_len, total_words):
input_len = max_sequence_len - 1
model = keras.models.Sequential()
model.add(layers.Embedding(total_words, 50, input_length=input_len))
model.add(layers.LSTM(50, input_shape=predictors[:1].shape))
model.add(layers.Dropout(0.2))
model.add(layers.Dense(activation='softmax', units = total_words))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'], lr=0.01)
return model
model_sb = create_model(max_sequence_len, total_words)
history = model_sb.fit(X_train, y_train, epochs = 20 , shuffle = True, validation_split=0.3, )
它运行良好,但我想从我的模型中获取 2 个输出,它们是 softmax 密集层中概率最大的输出。为了带走他们,我可以使用以下代码:
predicted = model_sb.predict(test_sequence, verbose=1)
然后通过这段代码找到前n个高概率输出:
y_sum = predicted.sum(axis=0)
ind = np.argpartition(y_sum, -n)[-n:]
ind[np.argsort(y_sum[ind])]
但是如果输出是这些 n 输出之一(带有“或”条件),我需要知道我的模型的准确性是否有任何包可以帮助我?我的意思是我不想只用一个最大概率输出来评估我的模型,我想通过 2 个高概率结果来评估准确性和损失。
达令说
相关分类