我有一个干净的数据集,其 nan 值为零,但我继续在回归器上遇到相同的错误。我的框架叫做 new_player_data
我试过找到任何
list(new_player_data.where(new_player_data.isna()).count() > 0)
返回
[假,假,假,假,假,假]
大约两百次。我认为可能有一些太大的浮动。我试过这个:
for i in new_player_data.columns[:]:
if new_player_data[i].dtype == float:
new_player_data[i] = round(new_player_data[i],2)
无论我得到什么:
regressor.fit(X_train, y_train)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-327-3a664017ddaa> in <module>
----> 1 regressor.fit(X_train, y_train)
/anaconda3/lib/python3.7/site-packages/sklearn/ensemble/forest.py in fit(self, X, y, sample_weight)
248
249 # Validate or convert input data
--> 250 X = check_array(X, accept_sparse="csc", dtype=DTYPE)
251 y = check_array(y, accept_sparse='csc', ensure_2d=False, dtype=None)
252 if sample_weight is not None:
/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, accept_large_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
571 if force_all_finite:
572 _assert_all_finite(array,
--> 573 allow_nan=force_all_finite == 'allow-nan')
574
575 shape_repr = _shape_repr(array.shape)
/anaconda3/lib/python3.7/site-packages/sklearn/utils/validation.py in _assert_all_finite(X, allow_nan)
54 not allow_nan and not np.isfinite(X).all()):
55 type_err = 'infinity' if allow_nan else 'NaN, infinity'
---> 56 raise ValueError(msg_err.format(type_err, X.dtype))
57
58
ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
关于我还可以在这里检查什么的任何想法?亏本
狐的传说
相关分类