描述
您如何使用 Pandas groupby对某些列进行分组,而不对其他列进行分组?
现在的进展
table_D = pd.DataFrame({
'Geo_ID': [1, 1, 1, 1, 2, 3, 4, 4, 5],
'A_Code': [12, 12, 12, 65, 65, 65, 65, 98, 98],
'A_Cost': [2, 9, 1, 10, 6, 7, 7, 6, 2],
}, columns=['Geo_ID', 'A_Code', 'A_Cost'])
table_D_dummies = pd.get_dummies(data = table_D, columns = ["A_Code"])
table_D_dummies_grouped = table_D_dummies.groupby(by = ["Geo_ID"]).sum()
问题
如下所示,这正确地按 Geo_ID 汇总了成本。不幸的是,它也是由 A_Code 求和的。
A_Code_12,A_Code_65和A_Code_98应结合分开。此外,在实际数据集中,A_Code 有 100 多个。
数据
表_D
+--------+--------+--------+
| Geo_ID | A_Code | A_Cost |
+--------+--------+--------+
| 1 | 12 | 2 |
| 1 | 12 | 9 |
| 1 | 12 | 1 |
| 1 | 65 | 10 |
| 2 | 65 | 6 |
| 3 | 65 | 7 |
| 4 | 65 | 7 |
| 4 | 98 | 6 |
| 5 | 98 | 2 |
+--------+--------+--------+
table_D_dummys
+---+--------+--------+-----------+-----------+-----------+
| | Geo_ID | A_Cost | A_Code_12 | A_Code_65 | A_Code_98 |
+---+--------+--------+-----------+-----------+-----------+
| 0 | 1 | 2 | 1 | 0 | 0 |
| 1 | 1 | 9 | 1 | 0 | 0 |
| 2 | 1 | 1 | 1 | 0 | 0 |
| 3 | 1 | 10 | 0 | 1 | 0 |
| 4 | 2 | 6 | 0 | 1 | 0 |
| 5 | 3 | 7 | 0 | 1 | 0 |
| 6 | 4 | 7 | 0 | 1 | 0 |
| 7 | 4 | 6 | 0 | 0 | 1 |
| 8 | 5 | 2 | 0 | 0 | 1 |
+---+--------+--------+-----------+-----------+-----------+
智慧大石
相关分类