我首先使用train_test_split来分离训练和测试数据,代码:
X=LOG.iloc[:,:-3]
y=LOG.iloc[:,-3]
X_train,X_test,y_train, y_test=train_test_split(X,y)
scaler=MinMaxScaler().fit(X)
X_train_scaled=scaler.transform(X_train)
X_test_scaled=scaler.transform(X_test)
for thisalpha in [0.1,1,10]:
mlpreg=MLPRegressor(hidden_layer_sizes=(11,8,4),
activation ="tanh",
alpha = thisalpha,
solver ="lbfgs",max_iter=20000).fit(X_train_scaled, y_train)
y_test_predict = mlpreg.predict(X_test_scaled)
y_train_predict= mlpreg.predict(X_train_scaled)
print "aipha = {}, train score= {:.4f}, test score = {:.4f}, iter_number={}, loss={:.4f}".format(
thisalpha,
mlpreg.score(X_train_scaled,y_train),
mlpreg.score(X_test_scaled,y_test),
mlpreg.n_iter_,
mlpreg.loss_)
我得到这样的表现:
aipha = 0.1,训练分数 = 0.7696,测试分数 = 0.7358
aipha = 1,训练分数 = 0.7419,测试分数 = 0.7219
aipha = 10,训练分数 = 0.6414,测试分数 = 0.6494
然后我尝试使用交叉验证来测试相同的数据集,我得到的分数要低得多:
X=LOG.iloc[:,:-3]
y=LOG.iloc[:,-3]
scaler= MinMaxScaler()
X_scaled=scaler.fit_transform(X)
clf=MLPRegressor(hidden_layer_sizes=(11,8,4),alpha=
1,solver="lbfgs",max_iter=20000)
scores = cross_val_score(clf,X_scaled,y,cv=3)
print scores
cross_val_score 是:
[0.04719619 0.36858483 0.36004186]
Cats萌萌
绝地无双
相关分类