猿问

使用 Tensorflow Dataset API 时如何使用设置提供标量

我使用 TF 数据集 API 和文件名的占位符,我在初始化迭代器时提供文件名(不同的文件取决于它是训练集还是验证集)。我还想使用额外的占位符来指示我们是在训练还是验证(包括在 dropout 层中)。但是,我无法使用数据集初始值设定项将值提供给这个占位符(这是有道理的,因为这不是数据集的一部分)。那么如何在使用 Dataset API 时提供额外的变量呢?


关键代码片段:


filenames_placeholder = tf.placeholder(tf.string, shape = (None))

is_training = tf.placeholder(tf.bool, shape = ()) # Error: You must feed a value for placeholder tensor 'Placeholder_1' with dtype bool

dataset = tf.data.TFRecordDataset(filenames_placeholder)

# (...) Many other dataset operations

iterator = dataset.make_initializable_iterator()

next_element = iterator.get_next()


# Model code using "next_element"  as inputs including the dropout layer at some point 

# where I would like to let the model know if we're training or validating


tf.layers.dropout(x, training = is_training)


# Model execution

with tf.Session() as sess:

sess.run(tf.global_variables_initializer())

sess.run(iterator.initializer, feed_dict = {filenames_placeholder: training_files, is_training: True})

# (...) Performing training

sess.run(iterator.initializer, feed_dict = {filenames_placeholder: training_files, is_training: False})

# (...) Performing validadtion


侃侃尔雅
浏览 160回答 1
1回答
随时随地看视频慕课网APP

相关分类

Python
我要回答