我有两个带有多索引的数据框,如下所示:
df1
pd.DataFrame({'observation': {('foo', '2017-04-16'): 'green',
('bar', '2017-04-25'): 'red',
('zap', '2017-04-16'): 'red',
('zip', '2017-04-25'): 'blue',
('zip', '2017-04-16'): 'white'},
'observation': {('zap', '2017-04-16'): np.nan,
('bar', '2017-04-27'): 'white',
('foo', '2017-05-16'): np.nan,
('foo', '2017-04-25'): 'red',
('zip', '2017-08-16'): 'red'}})
df2
pd.DataFrame({'foo': {('00', '08'): '0.0',
('01', '08'): '0.0',
('01', '08'): '0.0',
('00', '08'): '1.0',
('03', '08'): '1.0',
('06', '08'): '0.0',
('00', '08'): '1.0',
('00', '08'): '1.0',
('00', '08'): '0.0',
('02', '08'): '0.0'},
'client_id': {('00', '08'): '1.0',
('01', '08'): '1.0',
('01', '08'): '1.0',
('00', '08'): '1.0',
('03', '08'): '1.0',
('06', '08'): '1.0',
('00', '08'): '1.0',
('00', '08'): '1.0',
('00', '08'): '1.0',
('02', '08'): '1.0'},
'execution_date': {('00', '08'): '2019-01-09',
('01', '08'): '2019-01-09',
('01', '08'): '2019-01-09',
('00', '08'): '2019-01-09',
('03', '08'): '2019-01-09',
('06', '08'): '2019-01-09',
('00', '08'): '2019-01-09',
('00', '08'): '2019-01-09',
('00', '08'): '2019-01-09',
('02', '08'): '2019-01-09'},
'del': {('00', '08'): '0.0',
('01', '08'): '0.0',
('01', '08'): '0.0',
('00', '08'): '0.0',
('03', '08'): '0.0',
('06', '08'): '0.0',
('00', '08'): '0.0',
('00', '08'): '0.0',
('00', '08'): '0.0',
('02', '08'): '0.0'},
'act': {('00', '08'): '11',
('01', '08'): '03',
('01', '08'): '06',
('00', '08'): '07',
('03', '08'): '07',
('06', '08'): '11',
('00', '08'): '28',
('00', '08'): '08',
('00', '08'): '14',
('02', '08'): '26'},
两者的大小不一样,值也不总是重叠,但在 df1 中找到的每个索引对都在 df2 中。我想要做的是使用observationdf2 中的值更新 df1 中的观察 col ,无论它在哪里匹配。
换句话说,我想做一个基于多索引的内部连接,然后observation用 df2 中的值覆盖df1 中的值。但是有没有一种方法可以一步做到这一点,使用loc/indexing?(这是一个索引问题,但如果有办法解决它reset_index(),那也很好。)
期望的输出:
obs
00 04 30
08 02
09 16
10 26
16 26
01 01 30
07 16
02 08 02
03 13 26
07 15 26
摇曳的蔷薇
相关分类