我在下面编写代码,但每次都在“UnboundLocalError:分配前引用的局部变量'a'”下面给出错误,我使用了keras.layers.BatchNormalization(),编程给了我这个错误。我该怎么办?怎么了?
def make_CNN_model():
model = Sequential()
# input layer transformation (BatchNormalization + Dropout)
model.add(layers.BatchNormalization(name='inputlayer',input_shape=(28,28,1)))
model.add(layers.Dropout(name='Droupout_inputlayer',rates=0.3))
# convolutional layer (Conv2D + MaxPooling2D + Flatten + Dropout)
model.add(layers.Conv2D(filiters=32,activation='relu', name="Convoluationlayer_1",kernal_size=(3,3),border_mode='same'))
model.add(layers.MaxPooling2D(name='MaxPooling_1'))
model.add(layers.Flatten(name="Flaten_1"))
model.add(layers.Dropout(rate=0.3))
# fully connected layer (Dense + BatchNormalization + Activation + Dropout)
model.add(layers.Dense(name="FullyConnectedLayer_1",units=50))
model.add(layers.BatchNormalization())
model.add(layers.Activation('relu'))
model.add(layers.Dropout(rate=0.3))
# output layer (Dense + BatchNormalization + Activation)
model.add(layers.Dense(name = "Outputlayer", units=10))
model.add(layers.BatchNormalization())
model.add(layers.Activation('sigmod'))
return model
model = make_CNN_model()
model.compile(
optimizer='Adam',
loss='categorical_crossentropy',
metrics=['accuracy']
)
summary = model.fit(
X_train, y_train_onehot,
batch_size=5000,
epochs=5,
validation_split=0.2,
verbose=1,
callbacks=[time_summary]
)
翻翻过去那场雪
凤凰求蛊
陪伴而非守候
相关分类