我正在使用网格搜索的最佳参数对 10 倍交叉验证实施支持向量机,我需要了解预测结果为什么不同我在训练集上得到了两个准确度结果测试通知我需要训练集上最佳参数的预测结果以供进一步分析代码和结果如下所述。任何解释
from __future__ import print_function
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification_report
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from time import *
from sklearn import metrics
X=datascaled.iloc[:,0:13]
y=datascaled['num']
np.random.seed(1)
# Split the dataset in two equal parts
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.3, random_state=0)
# Set the parameters by cross-validation
tuned_parameters = [{'kernel': ['rbf'], 'gamma': [1e-2, 1e-3, 1e-4, 1e-5],
'C': [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]},
{'kernel': ['sigmoid'], 'gamma': [1e-2, 1e-3, 1e-4, 1e-5],
'C': [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000] },{'kernel': ['linear'], 'C': [0.001, 0.10, 0.1, 10, 25, 50, 100, 1000]}]
print()
clf = GridSearchCV(SVC(), tuned_parameters, cv=10,
scoring='accuracy')
t0 = time()
clf.fit(X_train, y_train)
t = time() - t0
print("Best parameters set found on development set:")
print()
print(clf.best_params_)
print()
print('Training accuracy')
print(clf.best_score_)
print(clf.best_estimator_)
print()
print()
print('****Results****')
svm_pred=clf.predict(X_train)
#print("\t\taccuracytrainkfold: {}".format(metrics.accuracy_score(y_train, svm_pred)))
print("=" * 52)
print("time cost: {}".format(t))
print()
print("confusion matrix\n", metrics.confusion_matrix(y_train, svm_pred))
print()
print("\t\taccuracy: {}".format(metrics.accuracy_score(y_train, svm_pred)))
print("\t\troc_auc_score: {}".format(metrics.roc_auc_score(y_train, svm_pred)))
print("\t\tcohen_kappa_score: {}".format(metrics.cohen_kappa_score(y_train, svm_pred)))
print()
相关分类