我正在尝试对一些电影评论数据运行分类器。数据已经被分成reviews_train.txt和reviews_test.txt。然后我加载数据并将每个数据分成评论和标签(正 (0) 或负 (1)),然后对这些数据进行矢量化。这是我的代码:
from sklearn import tree
from sklearn.metrics import accuracy_score
from sklearn.feature_extraction.text import TfidfVectorizer
#read the reviews and their polarities from a given file
def loadData(fname):
reviews=[]
labels=[]
f=open(fname)
for line in f:
review,rating=line.strip().split('\t')
reviews.append(review.lower())
labels.append(int(rating))
f.close()
return reviews,labels
rev_train,labels_train=loadData('reviews_train.txt')
rev_test,labels_test=loadData('reviews_test.txt')
#vectorizing the input
vectorizer = TfidfVectorizer(ngram_range=(1,2))
vectors_train = vectorizer.fit_transform(rev_train)
vectors_test = vectorizer.fit_transform(rev_test)
clf = tree.DecisionTreeClassifier()
clf = clf.fit(vectors_train, labels_train)
#prediction
pred=clf.predict(vectors_test)
#print accuracy
print (accuracy_score(pred,labels_test))
但是我不断收到此错误:
ValueError: Number of features of the model must match the input.
Model n_features is 118686 and input n_features is 34169
我对 Python 很陌生,所以如果这是一个简单的修复,我提前道歉。
相关分类