我正在努力实现一个模型,其中狄利克雷变量的集中因子取决于另一个变量。
情况如下:
系统因组件故障而失败(有三个组件,每次测试/观察只有一个失败)。
组件失效的概率取决于温度。
这是该情况的(评论)简短实现:
import numpy as np
import pymc3 as pm
import theano.tensor as tt
# Temperature data : 3 cold temperatures and 3 warm temperatures
T_data = np.array([10, 12, 14, 80, 90, 95])
# Data of failures of 3 components : [0,0,1] means component 3 failed
F_data = np.array([[0, 0, 1], \
[0, 0, 1], \
[0, 0, 1], \
[1, 0, 0], \
[1, 0, 0], \
[1, 0, 0]])
n_component = 3
# When temperature is cold : Component 1 fails
# When temperature is warm : Component 3 fails
# Component 2 never fails
# Number of observations :
n_obs = len(F_data)
# The number of failures can be modeled as a Multinomial F ~ M(n_obs, p) with parameters
# - n_test : number of tests (Fixed)
# - p : probability of failure of each component (shape (n_obs, 3))
# The probability of failure of components follows a Dirichlet distribution p ~ Dir(alpha) with parameters:
# - alpha : concentration (shape (n_obs, 3))
# The Dirichlet distributions ensures the probabilities sum to 1
# The alpha parameters (and the the probability of failures) depend on the temperature alpha ~ a + b * T
# - a : bias term (shape (1,3))
# - b : describes temperature dependency of alpha (shape (1,3))
_
# The prior on "a" is a normal distributions with mean 1/2 and std 0.001
# a ~ N(1/2, 0.001)
# The prior on "b" is a normal distribution zith mean 0 and std 0.001
# b ~ N(0, 0.001)
# Coding it all with pymc3
with pm.Model() as model:
a = pm.Normal('a', 1/2, 1/(0.001**2), shape = n_component)
b = pm.Normal('b', 0, 1/(0.001**2), shape = n_component)
# I generate 3 alphas values (corresponding to the 3 components) for each of the 6 temperatures
# I tried different ways to compute alpha but nothing worked out
alphas = pm.Deterministic('alphas', a + b * tt.stack([T_data, T_data, T_data], axis=1))
#alphas = pm.Deterministic('alphas', a + b[None, :] * T_data[:, None])
#alphas = pm.Deterministic('alphas', a + tt.outer(T_data,b))
相关分类