我有一个可变参数提升函数,它允许没有深度嵌套的函数组合的扁平 monadic 链:
const varArgs = f => {
const go = args =>
Object.defineProperties(
arg => go(args.concat(arg)), {
"runVarArgs": {get: function() {return f(args)}, enumerable: true},
[TYPE]: {value: "VarArgs", enumerable: true}
});
return go([]);
};
const varLiftM = (chain, of) => f => { // TODO: replace recursion with a fold
const go = (ms, g, i) =>
i === ms.length
? of(g)
: chain(ms[i]) (x => go(ms, g(x), i + 1));
return varArgs(ms => go(ms, f, 0));
};
它有效,但我想通过折叠从递归中抽象出来。正常的折叠似乎不起作用,至少不能与Task类型一起使用,
const varLiftM = (chain, of) => f =>
varArgs(ms => of(arrFold(g => mx => chain(mx) (g)) (f) (ms))); // A
因为行中的代数A会Task为每次迭代返回 a ,而不是部分应用的函数。
如何用折叠替换非尾递归?
这是当前递归实现的一个工作示例:
const TYPE = Symbol.toStringTag;
const struct = type => cons => {
const f = x => ({
["run" + type]: x,
[TYPE]: type,
});
return cons(f);
};
// variadic argument transformer
const varArgs = f => {
const go = args =>
Object.defineProperties(
arg => go(args.concat(arg)), {
"runVarArgs": {get: function() {return f(args)}, enumerable: true},
[TYPE]: {value: "VarArgs", enumerable: true}
});
return go([]);
};
// variadic monadic lifting function
const varLiftM = (chain, of) => f => { // TODO: replace recursion with a fold
const go = (ms, g, i) =>
i === ms.length
? of(g)
: chain(ms[i]) (x => go(ms, g(x), i + 1));
return varArgs(ms => go(ms, f, 0));
};
// asynchronous Task
const Task = struct("Task") (Task => k => Task((res, rej) => k(res, rej)));
const tOf = x => Task((res, rej) => res(x));
const tMap = f => tx =>
Task((res, rej) => tx.runTask(x => res(f(x)), rej));
const tChain = mx => fm =>
Task((res, rej) => mx.runTask(x => fm(x).runTask(res, rej), rej));
// mock function
const delay = (ms, x) =>
Task(r => setTimeout(r, ms, x));
// test data
const tw = delay(100, 1),
tx = delay(200, 2),
ty = delay(300, 3),
tz = delay(400, 4);
缥缈止盈
相关分类