猿问

使用Keras进行整数系列预测

我正在尝试编写一个RNN模型,该模型将预测整数序列中的下一个数字。模型损失在每个时期都会变小,但是预测永远不会变得非常准确。我已经尝试了许多火车的大小和时期,但是我的预测值总是与期望值相差几位数。您能否给我一些提示,以改善或我做错了什么?这是代码:


from keras.models import Sequential

from keras.layers import Dense, Dropout, LSTM

from keras.callbacks import ModelCheckpoint

from keras.utils import np_utils

from keras import metrics

import numpy as np


training_length = 10000

rnn_size = 512

hm_epochs = 30


def generate_sequence(length=10):

    step = np.random.randint(0,50)

    first_element = np.random.randint(0,10)

    first_element = 0

    l_ist = [(first_element + (step*i)) for i in range(length)]

    return l_ist


training_set = []


for _ in range(training_length):

    training_set.append(generate_sequence(10))


feature_set = [i[:-1] for i in training_set]


label_set = [i[-1:] for i in training_set]


X = np.reshape(feature_set,(training_length, 9, 1))

y = np.array(label_set)



model = Sequential()

model.add(LSTM(rnn_size, input_shape = (X.shape[1], X.shape[2]), return_sequences = True))

model.add(Dropout(0.2))

model.add(LSTM(rnn_size))

model.add(Dropout(0.2))

model.add(Dense(y.shape[1], activation='linear'))

model.compile(loss='mse', optimizer='rmsprop', metrics=['accuracy'])


filepath="checkpoint_folder/weights-improvement.hdf5"

checkpoint = ModelCheckpoint(filepath, monitor='loss', verbose=1, save_best_only=True, mode='min')

callbacks_list = [checkpoint]


model.fit(X,y,epochs=hm_epochs, callbacks=callbacks_list)

效果:


30个纪元后(亏损:66.39):


1顺序:[0,20,40,60,80,100,120,140,160]预期:[180] || 得到了:[181.86118]


2顺序:[0,11,22,33,44,55,66,77,88]预期:[99] || 得到了:[102.17369]


3顺序:[0,47,94,141,188,235,282,329,376]预计:[423] || 得到了:[419.1763]


4顺序:[0,47,94,141,188,235,282,329,376]预期:[423] || 得到了:[419.1763]


5序列:[0,4,8,12,16,20,24,28,32]预期:[36] || 得到了:[37.506496]


6序列:[0,48,96,144,192,240,288,336,384]预期:[432] || 得到了:[425.0569]


7顺序:[0、28、56、84、112、140、168、196、224]预期:[252] || 得到了:[253.60233]


8顺序:[0、18、36、54、72、90、108、126、144]预期:[162] || 得到了:[163.538]


9顺序:[0,19,38,57,76,95,114,133,152]预期:[171] || 得到了:[173.77933]


10序列:[0,1,2,3,4,5,6,7,8]预期:[9] || 得到了:[9.577981]


...

慕虎7371278
浏览 199回答 2
2回答

回首忆惘然

您是否尝试了更长的顺序?不需要LSTM,因为依赖性不是很长。您可以尝试使用RNN的另一个变体。
随时随地看视频慕课网APP

相关分类

Python
我要回答