我正在尝试在Python中执行与Excel中的VLOOKUP非常相似的操作。在StackOverflow上有很多与此相关的问题,但是它们都与本用例略有不同。希望任何人都可以引导我朝着正确的方向前进。我有以下两个熊猫数据框:
df1 = pd.DataFrame({'Invoice': ['20561', '20562', '20563', '20564'],
'Currency': ['EUR', 'EUR', 'EUR', 'USD']})
df2 = pd.DataFrame({'Ref': ['20561', 'INV20562', 'INV20563BG', '20564'],
'Type': ['01', '03', '04', '02'],
'Amount': ['150', '175', '160', '180'],
'Comment': ['bla', 'bla', 'bla', 'bla']})
print(df1)
Invoice Currency
0 20561 EUR
1 20562 EUR
2 20563 EUR
3 20564 USD
print(df2)
Ref Type Amount Comment
0 20561 01 150 bla
1 INV20562 03 175 bla
2 INV20563BG 04 160 bla
3 20564 02 180 bla
现在,我想创建一个新的数据框(df3),根据发票编号将两者合并。问题在于,发票编号在df2 ['Ref']中并不总是“完全匹配”,而有时却是“部分匹配”。因此,“发票”上的联接不会提供所需的输出,因为它不会复制发票20562和20563的数据,请参见下文:
df3 = df1.join(df2.set_index('Ref'), on='Invoice')
print(df3)
Invoice Currency Type Amount Comment
0 20561 EUR 01 150 bla
1 20562 EUR NaN NaN NaN
2 20563 EUR NaN NaN NaN
3 20564 USD 02 180 bla
有没有办法参加部分比赛?我知道如何用正则表达式“清理” df2 ['Ref'],但这不是我要的解决方案。使用for循环,我可以走很长一段路,但这不是Pythonic。
df4 = df1.copy()
for i, row in df1.iterrows():
tmp = df2[df2['Ref'].str.contains(row['Invoice'])]
df4.loc[i, 'Amount'] = tmp['Amount'].values[0]
print(df4)
Invoice Currency Amount
0 20561 EUR 150
1 20562 EUR 175
2 20563 EUR 160
3 20564 USD 180
可以以某种更优雅的方式使用str.contains()吗?提前非常感谢您的帮助!
江户川乱折腾
慕少森
相关分类