猿问

以可移植数据格式保存/加载scipy稀疏csr_matrix

如何csr_matrix以可移植格式保存/加载稀疏稀疏?稀疏稀疏矩阵是在Python 3(Windows 64位)上创建的,可在Python 2(Linux 64位)上运行。最初,我使用pickle(协议= 2,fix_imports = True),但是从Python 3.2.2(Windows 64位)到Python 2.7.2(Windows 32位)不起作用,并出现错误:


TypeError: ('data type not understood', <built-in function _reconstruct>, (<type 'numpy.ndarray'>, (0,), '[98]')).

接下来,尝试了numpy.save,numpy.load以及,scipy.io.mmwrite()并且scipy.io.mmread()这些方法都不起作用。


米琪卡哇伊
浏览 454回答 3
3回答

繁星淼淼

&nbsp;SciPy 1.19现在具有scipy.sparse.save_npz和scipy.sparse.load_npz。from scipy import sparsesparse.save_npz("yourmatrix.npz", your_matrix)your_matrix_back = sparse.load_npz("yourmatrix.npz")对于这两个函数,file参数也可以是类似文件的对象(即的结果open),而不是文件名。从Scipy用户组得到了答案:一个csr_matrix有3个数据属性此事:.data,.indices,和.indptr。都是简单的ndarray,因此numpy.save可以在它们上使用。使用numpy.save或保存三个数组numpy.savez,使用加载它们numpy.load,然后使用以下方法重新创建稀疏矩阵对象:new_csr = csr_matrix((data, indices, indptr), shape=(M, N))因此,例如:def save_sparse_csr(filename, array):&nbsp; &nbsp; np.savez(filename, data=array.data, indices=array.indices,&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;indptr=array.indptr, shape=array.shape)def load_sparse_csr(filename):&nbsp; &nbsp; loader = np.load(filename)&nbsp; &nbsp; return csr_matrix((loader['data'], loader['indices'], loader['indptr']),&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; shape=loader['shape'])

呼如林

尽管您写的内容scipy.io.mmwrite并scipy.io.mmread没有为您工作,但我只想补充一下它们的工作方式。这个问题是没有。1 Google命中,所以我本人开始np.savez并开始使用pickle.dump简单明显的scipy函数。它们为我工作,不应由尚未尝试过它们的人监督。from scipy import sparse, iom = sparse.csr_matrix([[0,0,0],[1,0,0],[0,1,0]])m&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; # <3x3 sparse matrix of type '<type 'numpy.int64'>' with 2 stored elements in Compressed Sparse Row format>io.mmwrite("test.mtx", m)del mnewm = io.mmread("test.mtx")newm&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;# <3x3 sparse matrix of type '<type 'numpy.int32'>' with 2 stored elements in COOrdinate format>newm.tocsr()&nbsp; &nbsp;# <3x3 sparse matrix of type '<type 'numpy.int32'>' with 2 stored elements in Compressed Sparse Row format>newm.toarray() # array([[0, 0, 0], [1, 0, 0], [0, 1, 0]], dtype=int32)
随时随地看视频慕课网APP

相关分类

Python
我要回答