根据这个
Catalyst应用了逻辑优化,例如谓词下推。优化器可以将过滤谓词下推到数据源中,从而使物理执行可以跳过不相关的数据。
Spark支持将谓词下推到数据源。JDBC是否也可以使用/预期该功能?
(通过检查数据库日志,我现在可以看到它不是默认行为-完整的查询将传递到数据库,即使后来受到火花过滤器的限制)
更多细节
在PostgreSQL 9.4上运行Spark 1.5
代码段:
from pyspark import SQLContext, SparkContext, Row, SparkConf
from data_access.data_access_db import REMOTE_CONNECTION
sc = SparkContext()
sqlContext = SQLContext(sc)
url = 'jdbc:postgresql://{host}/{database}?user={user}&password={password}'.format(**REMOTE_CONNECTION)
sql = "dummy"
df = sqlContext.read.jdbc(url=url, table=sql)
df = df.limit(1)
df.show()
SQL跟踪:
< 2015-09-15 07:11:37.718 EDT >LOG: execute <unnamed>: SET extra_float_digits = 3
< 2015-09-15 07:11:37.771 EDT >LOG: execute <unnamed>: SELECT * FROM dummy WHERE 1=0
< 2015-09-15 07:11:37.830 EDT >LOG: execute <unnamed>: SELECT c.oid, a.attnum, a.attname, c.relname, n.nspname, a.attnotnull OR (t.typtype = 'd' AND t.typnotnull), pg_catalog.pg_get_expr(d.adbin, d.a
drelid) LIKE '%nextval(%' FROM pg_catalog.pg_class c JOIN pg_catalog.pg_namespace n ON (c.relnamespace = n.oid) JOIN pg_catalog.pg_attribute a ON (c.oid = a.attrelid) JOIN pg_catalog.pg_type t ON (a.a
tttypid = t.oid) LEFT JOIN pg_catalog.pg_attrdef d ON (d.adrelid = a.attrelid AND d.adnum = a.attnum) JOIN (SELECT 15218474 AS oid , 1 AS attnum UNION ALL SELECT 15218474, 3) vals ON (c.oid = vals.oid
我希望最后一个选择将包含一个limit 1子句-但它不会
相关分类