一只斗牛犬
我不是JAVA编码器所以我坚持使用C ++。这也不是你的问题的直接答案(对不起,但我不能调试JAVA)把这作为一些指针去哪个方向或检查...Eratosthenes的筛子并行化是可能的,但速度增益不够大。相反,我使用更多的筛选标签,每个筛选器都有自己的子分区,每个表大小是所有子除数的共同乘法。这样你只需要启动一次表,然后检查它们O(1)并行在检查了所有的筛子后,我会使用线程对所有未使用的除数进行明显的除法测试memoize的如果你有所有找到的素数的有效表,那么除以素数并添加所有找到的素数我正在使用非并行素数搜索,这对我来说足够快......您可以根据并行代码进行调整......[Edit1]更新了代码//---------------------------------------------------------------------------int bits(DWORD p) { DWORD m=0x80000000; int b=32; for (;m;m>>=1,b--) if (p>=m) break; return b; }//---------------------------------------------------------------------------DWORD sqrt(const DWORD &x) { DWORD m,a; m=(bits(x)>>1); if (m) m=1<<m; else m=1; for (a=0;m;m>>=1) { a|=m; if (a*a>x) a^=m; } return a; }//---------------------------------------------------------------------------List<int> primes_i32; // list of precomputed primesconst int primes_map_sz=4106301; // max size of map for speedup search for primes max(LCM(used primes per bit)) (not >>1 because SOE is periodic at double LCM size and only odd values are stored 2/2=1)const int primes_map_N[8]={ 4106301,3905765,3585337,4026077,3386981,3460469,3340219,3974653 };const int primes_map_i0=33; // first index of prime not used in maskconst int primes_map_p0=137; // biggest prime used in maskBYTE primes_map[primes_map_sz]; // factors map for first i0-1 primesbool primes_i32_alloc=false;int isprime(int p) { int i,j,a,b,an,im[8]; BYTE u; an=0; if (!primes_i32.num) // init primes vars { primes_i32.allocate(1024*1024); primes_i32.add( 2); for (i=1;i<primes_map_sz;i++) primes_map[i]=255; primes_map[0]=254; primes_i32.add( 3); for (u=255- 1,j= 3,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 5); for (u=255- 2,j= 5,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 7); for (u=255- 4,j= 7,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 11); for (u=255- 8,j= 11,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 13); for (u=255- 16,j= 13,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 17); for (u=255- 32,j= 17,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 19); for (u=255- 64,j= 19,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 23); for (u=255-128,j= 23,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 29); for (u=255- 1,j=137,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 31); for (u=255- 2,j=131,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 37); for (u=255- 4,j=127,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 41); for (u=255- 8,j=113,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 43); for (u=255- 16,j= 83,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 47); for (u=255- 32,j= 61,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 53); for (u=255- 64,j=107,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 59); for (u=255-128,j=101,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 61); for (u=255- 1,j=103,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 67); for (u=255- 2,j= 67,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 71); for (u=255- 4,j= 37,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 73); for (u=255- 8,j= 41,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 79); for (u=255- 16,j= 43,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 83); for (u=255- 32,j= 47,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 89); for (u=255- 64,j= 53,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add( 97); for (u=255-128,j= 59,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(101); for (u=255- 1,j= 97,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(103); for (u=255- 2,j= 89,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(107); for (u=255- 4,j=109,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(109); for (u=255- 8,j= 79,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(113); for (u=255- 16,j= 73,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(127); for (u=255- 32,j= 71,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(131); for (u=255- 64,j= 31,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; primes_i32.add(137); for (u=255-128,j= 29,i=j>>1;i<primes_map_sz;i+=j) primes_map[i]&=u; } if (!primes_i32_alloc) { if (p <=1) return 0; // ignore too small walues if (p&1==0) return 0; // not prime if even if (p>primes_map_p0) { j=p>>1; i=j; if (i>=primes_map_N[0]) i%=primes_map_N[0]; if (!(primes_map[i]& 1)) return 0; i=j; if (i>=primes_map_N[1]) i%=primes_map_N[1]; if (!(primes_map[i]& 2)) return 0; i=j; if (i>=primes_map_N[2]) i%=primes_map_N[2]; if (!(primes_map[i]& 4)) return 0; i=j; if (i>=primes_map_N[3]) i%=primes_map_N[3]; if (!(primes_map[i]& 8)) return 0; i=j; if (i>=primes_map_N[4]) i%=primes_map_N[4]; if (!(primes_map[i]& 16)) return 0; i=j; if (i>=primes_map_N[5]) i%=primes_map_N[5]; if (!(primes_map[i]& 32)) return 0; i=j; if (i>=primes_map_N[6]) i%=primes_map_N[6]; if (!(primes_map[i]& 64)) return 0; i=j; if (i>=primes_map_N[7]) i%=primes_map_N[7]; if (!(primes_map[i]&128)) return 0; } } an=primes_i32[primes_i32.num-1]; if (an>=p) { // linear table search if (p<127) // 31st prime { if (an>=p) for (i=0;i<primes_i32.num;i++) { a=primes_i32[i]; if (a==p) return 1; if (a> p) return 0; } } // approximation table search else{ for (j=1,i=primes_i32.num-1;j<i;j<<=1); j>>=1; if (!j) j=1; for (i=0;j;j>>=1) { i|=j; if (i>=primes_i32.num) { i-=j; continue; } a=primes_i32[i]; if (a==p) return 1; if (a> p) i-=j; } return 0; } } a=an; a+=2; for (j=a>>1,i=0;i<8;i++) im[i]=j%primes_map_N[i]; an=(1<<((bits(p)>>1)+1))-1; if (an<=0) an=1; an=an+an; for (;a<=p;a+=2) { for (j=1,i=0;i<8;i++,j<<=1) // check if map is set if (!(primes_map[im[i]]&j)) { j=-1; break; } // if not dont bother with division for (i=0;i<8;i++) { im[i]++; if (im[i]>=primes_map_N[i]) im[i]-=primes_map_N[i]; } if (j<0) continue; for (i=primes_map_i0;i<primes_i32.num;i++) { b=primes_i32[i]; if (b>an) break; if ((a%b)==0) { i=-1; break; } } if (i<0) continue; primes_i32.add(a); if (a==p) return 1; if (a> p) return 0; } return 0; }//---------------------------------------------------------------------------void getprimes(int p) // compute and allocate primes up to p { if (!primes_i32.num) isprime(3); int p0=primes_i32[primes_i32.num-1]; // biggest prime computed yet if (p>p0+10000) // if too big difference use sieves to fast precompute { // T((0.3516+0.5756*log10(n))*n) -> O(n.log(n)) // sieves N/16 bytes p=100 000 000 t=1903.031 ms // ------------------------------ // 0 1 2 3 4 5 6 7 bit // ------------------------------ // 1 3 5 7 9 11 13 15 +-> +2 // 17 19 21 23 25 27 29 31 | // 33 35 37 39 41 43 45 47 V +16 // ------------------------------ int N=(p|15),M=(N>>4); // store only odd values 1,3,5,7,... each bit ... char *m=new char[M+1]; // m[i] -> is 1+i+i prime? (factors map) int i,j,k,n; // init sieves m[0]=254; for (i=1;i<=M;i++) m[i]=255; for(n=sqrt(p),i=1;i<=n;) { int a=m[i>>4]; if (int(a& 1)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a& 2)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a& 4)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a& 8)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a& 16)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a& 32)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a& 64)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; if (int(a&128)!=0) for(k=i+i,j=i+k;j<=N;j+=k) m[j>>4]&=255-(1<<((j>>1)&7)); i+=2; } // compute primes i=p0&0xFFFFFFF1; k=m[i>>4]; // start after last found prime in list if ((int(k& 1)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k& 2)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k& 4)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k& 8)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k& 16)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k& 32)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k& 64)!=0)&&(i>p0)) primes_i32.add(i); i+=2; if ((int(k&128)!=0)&&(i>p0)) primes_i32.add(i); i+=2; for(j=i>>4;j<M;i+=16,j++) // continue with 16-blocks { k=m[j]; if (!k) continue; if (int(k& 1)!=0) primes_i32.add(i ); if (int(k& 2)!=0) primes_i32.add(i+ 2); if (int(k& 4)!=0) primes_i32.add(i+ 4); if (int(k& 8)!=0) primes_i32.add(i+ 6); if (int(k& 16)!=0) primes_i32.add(i+ 8); if (int(k& 32)!=0) primes_i32.add(i+10); if (int(k& 64)!=0) primes_i32.add(i+12); if (int(k&128)!=0) primes_i32.add(i+14); } k=m[j]; // do the last primes if ((int(k& 1)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k& 2)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k& 4)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k& 8)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k& 16)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k& 32)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k& 64)!=0)&&(i<=p)) primes_i32.add(i); i+=2; if ((int(k&128)!=0)&&(i<=p)) primes_i32.add(i); i+=2; delete[] m; } else{ bool b0=primes_i32_alloc; primes_i32_alloc=true; isprime(p); primes_i32_alloc=false; primes_i32_alloc=b0; } }//---------------------------------------------------------------------------解决了矿井代码中的一些溢出漏洞(筛子周期......)还有一些进一步的优化添加了一个getprimes(p)功能,primes<=p如果它们还没有那么快就可以快速添加到列表中在前1000万个质数上测试正确性(最多15 485 863)getprimes(15 485 863) 我的设置在175.563毫秒解决了它isprime 这种粗糙的方式比较慢primes_i32是一个动态的ints 列表primes_i32.num是int列表中的s 数primes_i32[i]是i-thint i = <0,primes_i32.num-1>primes_i32.add(x)添加x到列表的末尾primes_i32.allocate(N)为N列表中的项预先分配空间以避免重新分配减速[笔记]我使用这个非并行版本的欧拉问题10(所有素数的总和低于2000000) ---------------------------------------------------------------------------------- Time ID Reference | My solution | Note ---------------------------------------------------------------------------------- [ 35.639 ms] Problem010. 142913828922 | 142913828922 | 64_bit筛选标签每个都作为primes_map[]阵列中的位片,并且仅使用奇数值(甚至不需要记住筛子)。如果你想要找到所有素数的最大速度,那么只需调用isprime(max value)并读取其中的内容primes_i32[]我使用一半的比特大小而不是sqrt来提高速度希望我没有忘记在这里复制一些东西