我的session应该是正常的呀
x = tf.compat.v1.placeholder('float', [None, 784]) sess = tf.Session() #取出线性回归方法 with tf.variable_scope('regression'): y1, variables = model.regression(x) saver = tf.train.Saver(variables) saver.restore(sess, 'mnist/data/regression.ckpt') #取出训练好的卷积的模型 with tf.variable_scope('convolutionoal'): keep_prob = tf.placeholder('float') y2, variables = model.convolutional(x, keep_prob) saver = tf.train.Saver(variables) #saver.restore(sess, "mnist/data/convalutional.ckpt") #tf.train.latest_checkpoint('mnist/data/convalutional.ckpt') module_file = tf.train.latest_checkpoint('mnist/data/convolutional.ckpt') with tf.Session() as sess: sess.run(tf.global_variables_initializer()) if module_file is not None: saver.restore(sess, module_file) #定义输入 线性 def regression(input): return sess.run(y1, feed_dict={x: input}).flatten().tolist() #定义输入 卷积 def convolutional(input): return sess.run(y2, feed_dict={x: input, keep_prob: 1.0}).flatten().tolist()