with tf.variable_scope("convolutional"):
x = tf.placeholder(tf.float32, [None, 784], name='x')
keep_prob = tf.placeholder(tf.float32)
y, variables = model.convolutional(x, keep_prob)
y_ = tf.placeholder(tf.float32, [None, 10], name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver(variables)
with tf.Session() as sess:
merged_summary_op = tf.summary.merge_all()
summay_writer = tf.summary.FileWriter('/tmp/mnist_log/1', sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print((sess.run(accuracy, feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob: 1.0})))
path = saver.save(
sess,os.path.join(os.path.dirname(__file__), 'data', 'convolutional.ckpt'),
write_meta_graph=False, write_state=False)
print("Saved:", path)
TypeError: Value passed to parameter 'input' has DataType int32 not in list of allowed values: float16, bfloat16, float32, float64找到在哪儿错了
model.py conv2d那个文件改一下下面这行
把
return tf.nn.conv2d([1, 1, 1, 1], padding='SAME') 改成
return tf.nn.conv2d(x, W, [1, 1, 1, 1], padding='SAME')
没有传入参数当然出错喽
Traceback (most recent call last): File "/home/mnist/convolutional.py", line 11, in <module> y, variables = model.convolutional(x, keep_prob) File "/home/mnist/model.py", line 22, in convolutional h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) File "/home/mnist/model.py", line 10, in conv2d return tf.nn.conv2d([1, 1, 1, 1], padding='SAME') TypeError: Value passed to parameter 'input' has DataType int32 not in list of allowed values: float16, bfloat16, float32, float64
同是这个错误 求解答
import os
import model
import tensorflow as tf
import input_data
data = input_data.read_data_sets('MNIST_data', one_hot=True)
# model
with tf.variable_scope("convolutional"):
x = tf.placeholder(tf.float32, [None, 784], name='x')
keep_prob = tf.placeholder(tf.float32)
y, variables = model.convolutional(x, keep_prob)
# train
y_ = tf.placeholder(tf.float32, [None, 10], name='y')
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
saver = tf.train.Saver(variables)
with tf.Session() as sess:
merged_summary_op = tf.summary.merge_all()
summary_writer = tf.summary.FileWriter('/home/mnist_log/1', sess.graph)
summary_writer.add_graph(sess.graph)
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = data.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
print("step %d, training accuracy %g" % (i, train_accuracy))
sess.run(train_step, feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})
print(sess.run(accuracy, feed_dict={x: data.test.images, y_: data.test.labels, keep_prob: 1.0}))
path = saver.save(sess, os.path.join(os.path.dirname(__file__), 'data', 'convolutional.ckpt'),
write_meta_graph=False, write_state=False)
print("Saved:", path)