缺失值NaN的处理
可以丢弃dropna 整行或列去除
也可以填充固定值或插值 fillna
df1.dropna()
df1.fillna(value=2))
# Set
s1=pd.Series(list(range(10,18)),index=pd.date_range("20170301",periods=8))
df["F"]=s1
print(df)
df.at[dates[0],"A"]=0
print(df)
df.iat[1,1]=1
df.loc[:,"D"]=np.array([4]*len(df))
print(df)
df2=df.copy()
df2[df2>0]=-df2
print(df2)
# Select切片 print(df["A"]) print(type(df["A"])) print(df[:3]) print(df["20170301":"20170304"]) print(df.loc[dates[0]]) print(df.loc["20170301":"20170304",["B","D"]]) print(df.at[dates[0],"C"]) print(df.at["20170301","C"]) print(df.iloc[1:3,2:4]) print(df.iloc[1,4]) print(df.iat[1,4]) print(df[df.B>0][df.A<0]) print(df[df>0.1]) print(df[df["E"].isin([1,2])])
本节代码 df1=df.reindex(index=dates[:4],columns = list("ABCD")+["G"]) df1.loc[dates[0]:dates[1],"G"]=1 print (df1) #丢弃数据 print(df1.dropna()) #填充数据 print(df1.fillna(value=1))