老师没有把代码贴出来,光看老师讲映像不够深刻,还是要自己动手。同学把自己整理的代码贴出来给大家看看:
iris数据集:
5.1 | 3.5 | 1.4 | 0.2 | Iris-setosa |
4.9 | 3 | 1.4 | 0.2 | Iris-setosa |
4.7 | 3.2 | 1.3 | 0.2 | Iris-setosa |
4.6 | 3.1 | 1.5 | 0.2 | Iris-setosa |
5 | 3.6 | 1.4 | 0.2 | Iris-setosa |
5.4 | 3.9 | 1.7 | 0.4 | Iris-setosa |
4.6 | 3.4 | 1.4 | 0.3 | Iris-setosa |
5 | 3.4 | 1.5 | 0.2 | Iris-setosa |
4.4 | 2.9 | 1.4 | 0.2 | Iris-setosa |
4.9 | 3.1 | 1.5 | 0.1 | Iris-setosa |
5.4 | 3.7 | 1.5 | 0.2 | Iris-setosa |
4.8 | 3.4 | 1.6 | 0.2 | Iris-setosa |
4.8 | 3 | 1.4 | 0.1 | Iris-setosa |
4.3 | 3 | 1.1 | 0.1 | Iris-setosa |
5.8 | 4 | 1.2 | 0.2 | Iris-setosa |
5.7 | 4.4 | 1.5 | 0.4 | Iris-setosa |
5.4 | 3.9 | 1.3 | 0.4 | Iris-setosa |
5.1 | 3.5 | 1.4 | 0.3 | Iris-setosa |
5.7 | 3.8 | 1.7 | 0.3 | Iris-setosa |
5.1 | 3.8 | 1.5 | 0.3 | Iris-setosa |
5.4 | 3.4 | 1.7 | 0.2 | Iris-setosa |
5.1 | 3.7 | 1.5 | 0.4 | Iris-setosa |
4.6 | 3.6 | 1 | 0.2 | Iris-setosa |
5.1 | 3.3 | 1.7 | 0.5 | Iris-setosa |
4.8 | 3.4 | 1.9 | 0.2 | Iris-setosa |
5 | 3 | 1.6 | 0.2 | Iris-setosa |
5 | 3.4 | 1.6 | 0.4 | Iris-setosa |
5.2 | 3.5 | 1.5 | 0.2 | Iris-setosa |
5.2 | 3.4 | 1.4 | 0.2 | Iris-setosa |
4.7 | 3.2 | 1.6 | 0.2 | Iris-setosa |
4.8 | 3.1 | 1.6 | 0.2 | Iris-setosa |
5.4 | 3.4 | 1.5 | 0.4 | Iris-setosa |
5.2 | 4.1 | 1.5 | 0.1 | Iris-setosa |
5.5 | 4.2 | 1.4 | 0.2 | Iris-setosa |
4.9 | 3.1 | 1.5 | 0.1 | Iris-setosa |
5 | 3.2 | 1.2 | 0.2 | Iris-setosa |
5.5 | 3.5 | 1.3 | 0.2 | Iris-setosa |
4.9 | 3.1 | 1.5 | 0.1 | Iris-setosa |
4.4 | 3 | 1.3 | 0.2 | Iris-setosa |
5.1 | 3.4 | 1.5 | 0.2 | Iris-setosa |
5 | 3.5 | 1.3 | 0.3 | Iris-setosa |
4.5 | 2.3 | 1.3 | 0.3 | Iris-setosa |
4.4 | 3.2 | 1.3 | 0.2 | Iris-setosa |
5 | 3.5 | 1.6 | 0.6 | Iris-setosa |
5.1 | 3.8 | 1.9 | 0.4 | Iris-setosa |
4.8 | 3 | 1.4 | 0.3 | Iris-setosa |
5.1 | 3.8 | 1.6 | 0.2 | Iris-setosa |
4.6 | 3.2 | 1.4 | 0.2 | Iris-setosa |
5.3 | 3.7 | 1.5 | 0.2 | Iris-setosa |
5 | 3.3 | 1.4 | 0.2 | Iris-setosa |
7 | 3.2 | 4.7 | 1.4 | Iris-versicolor |
6.4 | 3.2 | 4.5 | 1.5 | Iris-versicolor |
6.9 | 3.1 | 4.9 | 1.5 | Iris-versicolor |
5.5 | 2.3 | 4 | 1.3 | Iris-versicolor |
6.5 | 2.8 | 4.6 | 1.5 | Iris-versicolor |
5.7 | 2.8 | 4.5 | 1.3 | Iris-versicolor |
6.3 | 3.3 | 4.7 | 1.6 | Iris-versicolor |
4.9 | 2.4 | 3.3 | 1 | Iris-versicolor |
6.6 | 2.9 | 4.6 | 1.3 | Iris-versicolor |
5.2 | 2.7 | 3.9 | 1.4 | Iris-versicolor |
5 | 2 | 3.5 | 1 | Iris-versicolor |
5.9 | 3 | 4.2 | 1.5 | Iris-versicolor |
6 | 2.2 | 4 | 1 | Iris-versicolor |
6.1 | 2.9 | 4.7 | 1.4 | Iris-versicolor |
5.6 | 2.9 | 3.6 | 1.3 | Iris-versicolor |
6.7 | 3.1 | 4.4 | 1.4 | Iris-versicolor |
5.6 | 3 | 4.5 | 1.5 | Iris-versicolor |
5.8 | 2.7 | 4.1 | 1 | Iris-versicolor |
6.2 | 2.2 | 4.5 | 1.5 | Iris-versicolor |
5.6 | 2.5 | 3.9 | 1.1 | Iris-versicolor |
5.9 | 3.2 | 4.8 | 1.8 | Iris-versicolor |
6.1 | 2.8 | 4 | 1.3 | Iris-versicolor |
6.3 | 2.5 | 4.9 | 1.5 | Iris-versicolor |
6.1 | 2.8 | 4.7 | 1.2 | Iris-versicolor |
6.4 | 2.9 | 4.3 | 1.3 | Iris-versicolor |
6.6 | 3 | 4.4 | 1.4 | Iris-versicolor |
6.8 | 2.8 | 4.8 | 1.4 | Iris-versicolor |
6.7 | 3 | 5 | 1.7 | Iris-versicolor |
6 | 2.9 | 4.5 | 1.5 | Iris-versicolor |
5.7 | 2.6 | 3.5 | 1 | Iris-versicolor |
5.5 | 2.4 | 3.8 | 1.1 | Iris-versicolor |
5.5 | 2.4 | 3.7 | 1 | Iris-versicolor |
5.8 | 2.7 | 3.9 | 1.2 | Iris-versicolor |
6 | 2.7 | 5.1 | 1.6 | Iris-versicolor |
5.4 | 3 | 4.5 | 1.5 | Iris-versicolor |
6 | 3.4 | 4.5 | 1.6 | Iris-versicolor |
6.7 | 3.1 | 4.7 | 1.5 | Iris-versicolor |
6.3 | 2.3 | 4.4 | 1.3 | Iris-versicolor |
5.6 | 3 | 4.1 | 1.3 | Iris-versicolor |
5.5 | 2.5 | 4 | 1.3 | Iris-versicolor |
5.5 | 2.6 | 4.4 | 1.2 | Iris-versicolor |
6.1 | 3 | 4.6 | 1.4 | Iris-versicolor |
5.8 | 2.6 | 4 | 1.2 | Iris-versicolor |
5 | 2.3 | 3.3 | 1 | Iris-versicolor |
5.6 | 2.7 | 4.2 | 1.3 | Iris-versicolor |
5.7 | 3 | 4.2 | 1.2 | Iris-versicolor |
5.7 | 2.9 | 4.2 | 1.3 | Iris-versicolor |
6.2 | 2.9 | 4.3 | 1.3 | Iris-versicolor |
5.1 | 2.5 | 3 | 1.1 | Iris-versicolor |
5.7 | 2.8 | 4.1 | 1.3 | Iris-versicolor |
6.3 | 3.3 | 6 | 2.5 | Iris-virginica |
5.8 | 2.7 | 5.1 | 1.9 | Iris-virginica |
7.1 | 3 | 5.9 | 2.1 | Iris-virginica |
6.3 | 2.9 | 5.6 | 1.8 | Iris-virginica |
6.5 | 3 | 5.8 | 2.2 | Iris-virginica |
7.6 | 3 | 6.6 | 2.1 | Iris-virginica |
4.9 | 2.5 | 4.5 | 1.7 | Iris-virginica |
7.3 | 2.9 | 6.3 | 1.8 | Iris-virginica |
6.7 | 2.5 | 5.8 | 1.8 | Iris-virginica |
7.2 | 3.6 | 6.1 | 2.5 | Iris-virginica |
6.5 | 3.2 | 5.1 | 2 | Iris-virginica |
6.4 | 2.7 | 5.3 | 1.9 | Iris-virginica |
6.8 | 3 | 5.5 | 2.1 | Iris-virginica |
5.7 | 2.5 | 5 | 2 | Iris-virginica |
5.8 | 2.8 | 5.1 | 2.4 | Iris-virginica |
6.4 | 3.2 | 5.3 | 2.3 | Iris-virginica |
6.5 | 3 | 5.5 | 1.8 | Iris-virginica |
7.7 | 3.8 | 6.7 | 2.2 | Iris-virginica |
7.7 | 2.6 | 6.9 | 2.3 | Iris-virginica |
6 | 2.2 | 5 | 1.5 | Iris-virginica |
6.9 | 3.2 | 5.7 | 2.3 | Iris-virginica |
5.6 | 2.8 | 4.9 | 2 | Iris-virginica |
7.7 | 2.8 | 6.7 | 2 | Iris-virginica |
6.3 | 2.7 | 4.9 | 1.8 | Iris-virginica |
6.7 | 3.3 | 5.7 | 2.1 | Iris-virginica |
7.2 | 3.2 | 6 | 1.8 | Iris-virginica |
6.2 | 2.8 | 4.8 | 1.8 | Iris-virginica |
6.1 | 3 | 4.9 | 1.8 | Iris-virginica |
6.4 | 2.8 | 5.6 | 2.1 | Iris-virginica |
7.2 | 3 | 5.8 | 1.6 | Iris-virginica |
7.4 | 2.8 | 6.1 | 1.9 | Iris-virginica |
7.9 | 3.8 | 6.4 | 2 | Iris-virginica |
6.4 | 2.8 | 5.6 | 2.2 | Iris-virginica |
6.3 | 2.8 | 5.1 | 1.5 | Iris-virginica |
6.1 | 2.6 | 5.6 | 1.4 | Iris-virginica |
7.7 | 3 | 6.1 | 2.3 | Iris-virginica |
6.3 | 3.4 | 5.6 | 2.4 | Iris-virginica |
6.4 | 3.1 | 5.5 | 1.8 | Iris-virginica |
6 | 3 | 4.8 | 1.8 | Iris-virginica |
6.9 | 3.1 | 5.4 | 2.1 | Iris-virginica |
6.7 | 3.1 | 5.6 | 2.4 | Iris-virginica |
6.9 | 3.1 | 5.1 | 2.3 | Iris-virginica |
5.8 | 2.7 | 5.1 | 1.9 | Iris-virginica |
6.8 | 3.2 | 5.9 | 2.3 | Iris-virginica |
6.7 | 3.3 | 5.7 | 2.5 | Iris-virginica |
6.7 | 3 | 5.2 | 2.3 | Iris-virginica |
6.3 | 2.5 | 5 | 1.9 | Iris-virginica |
6.5 | 3 | 5.2 | 2 | Iris-virginica |
6.2 | 3.4 | 5.4 | 2.3 | Iris-virginica |
5.9 | 3 | 5.1 | 1.8 | Iris-virginica |
import numpy as np class Perceptron(object): """ eta:学习率 n_iter:权重向量的训练次数 w_:神经分叉权重向量 errors:用于记录神经元判断出错次数 """ def __init__(self, eta, n_iter): self.eta=eta self.n_iter=n_iter pass def net_input(self,X): """ z = W0*1 + W1*X1 +.... Wn*Xn """ return np.dot(X,self.w_[1:]) + self.w_[0] pass def predict(self, X): return np.where(self.net_input(X) >= 0.0 ,1, -1) pass def fit(self,X,y): """ 输入训练数据,训练神经元,x输入样本向量,y对应样本的正确分类 X:shape[n_samples, n_features] eg:X:[[1, 2, ,3],[4, 5, 6]] n_samples: 2 n_features: 3 y:[1, -1] """ """ 初始化权重向量为0 加一是因为前面算法提到的w0,也就是步调函数阈值 """ self.w_ = np.zeros(1+X.shape[1]) self.errors_ =[] for _ in range(self.n_iter): errors = 0 """ X:[[1,2,3],[4,5,6]] y:[1, -1] zip(X,y)=[[1,2,3, 1],[4,5,6, -1]] """ for xi, target in zip(X,y): """ update = 学习率 * (y-y') """ update = self.eta * (target - self.predict(xi)) """ xi 是一个向量 update * xi 等价: [更新w(1) = X[1]*update, 更新w(2) = X[2]*update,更新w(3) = X[3]*update,] """ self.w_[1:]+=update * xi self.w_[0] += update errors += int(update != 0.0) self.errors_.append(errors) pass pass pass file = "D:/PyCharm_test_file/Jupyter_test/iris1.xlsx" import pandas as pd df = pd.read_excel(file,header=None) #df.head(10) #print(df) import matplotlib.pyplot as plt import numpy as npy = df.loc[0:99, 4].values y = np.where(y == 'Iris-setosa', -1, 1) #print(y) X = df.iloc[0:100, [0, 2]].values #print(X) plt.scatter(X[:50, 0], X[:50, 1], color='red', marker='o', label='setosa') plt.scatter(X[50:100, 0], X[50:100, 1], color='blue', marker='x', label='vericolor') plt.rcParams['font.sans-serif']=['SimHei'] plt.xlabel('花瓣长度') plt.ylabel('花茎长度') plt.legend(loc='upper left') plt.show() from matplotlib.colors import ListedColormap def plot_decision_regions(X, y, classifier, resolution=0.02): marker = ('s', 'x', 'o', 'v') colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan') cmap = ListedColormap(colors[:len(np.unique(y))]) x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() #将x1、x2最大最小值通过arange函数得到的向量,扩展成两个二维矩阵 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution)) #预测 Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T) #ravel还原成单维向量 #绘制 Z= Z.reshape(xx1.shape) #将Z转换成与xx1一样的二维数组 plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap) #在两组分类结果中间画分割线-->必须线性可分 plt.xlim(xx1.min(), xx1.max()) plt.ylim(xx2.min(), xx2.max()) for idx, cl in enumerate(np.unique(y)): plt.scatter(x=X[y==cl, 0], y=X[y==cl, 1], alpha=0.8, c=cmap(idx), marker=marker[idx], label=cl) ppn = Perceptron(0.1, 10) ppn.fit(X, y) plot_decision_regions(X, y, ppn, resolution=0.02)