先上实例代码,后面再来详细讲解。
/** * 并发编程,map的线程安全性问题,使用互斥锁的方式 */ package main import ( "sync" "time" "fmt" ) var data map[int]int = make(map[int]int) var wgMap sync.WaitGroup = sync.WaitGroup{} var muMap sync.Mutex = sync.Mutex{} func main() { // 并发启动的协程数量 max := 10000 wgMap.Add(max) time1 := time.Now().UnixNano() for i := 0; i < max; i++ { go modifySafe(i) } wgMap.Wait() time2 := time.Now().UnixNano() fmt.Printf("data len=%d, time=%d", len(data), (time2-time1)/1000000) } // 线程安全的方法,增加了互斥锁 func modifySafe(i int) { //muMap.Lock() data[i] = i //muMap.Unlock() wgMap.Done() }
上面的代码中 var data map[int]int 是一个key和value都是int类型的map,启动的协程并发执行时,也只是非常简单的对 data[i]=i 这样的一个赋值操作。
主程序发起1w个并发,不断对map中不同的key进行赋值操作。
在不安全的情况下,我们直接就看到一个panic异常信息,程序是无法正常执行完成的,如下:
fatal error: concurrent map writes
goroutine 30 [running]:
runtime.throw(0x4d6e44, 0x15)
C:/Go/src/runtime/panic.go:605 +0x9c fp=0xc04209bf48 sp=0xc04209bf28 pc=0x42a22c
runtime.mapassign_fast64(0x4ba4c0, 0xc04207e060, 0xc, 0x0)
C:/Go/src/runtime/hashmap_fast.go:607 +0x3d9 fp=0xc04209bfa8 sp=0xc04209bf48 pc=0x40bed9
main.modifyNotSafe(0xc)
mainMap.go:44 +0x4a fp=0xc04209bfd8 sp=0xc04209bfa8 pc=0x4a1f1a
runtime.goexit()
C:/Go/src/runtime/asm_amd64.s:2337 +0x1 fp=0xc04209bfe0 sp=0xc04209bfd8 pc=0x451cc1
created by main.main
mainMap.go:23 +0x184
对比之前《Go实例讲解,并发编程-slice并发读写的线程安全性问题》,slice的数据结构在不安全的并发执行中是不会报错的,只是数据可能会出现丢失。
而这里的map的数据结构,是直接报错,所以在使用中就必须认真对待,否则整个程序是无法继续执行的。
所以也看出来,Go在对待线程安全性问题方面,对slice还是更加宽容的,对map则更加严格,这也是在并发编程时对我们提出了基本的要求。
将上面的代码稍微做些修改,对 data[i]=i 的前后增加上 muMap.Lock() 和 muMap.Unlock() ,也就保证了多线程并行的情况下,遇到冲突时有互斥锁的保证,避免出现线程安全性问题。
关于为什么会出现线程安全性问题,这里就不再详细讲解了,大家可以参考之前的两篇文章《Go实例讲解,并发编程-slice并发读写的线程安全性问题》和《Go实例讲解,并发编程-数字递增的线程安全性问题》。
这里,我们再来探讨一个问题,如何保证map的线程安全性?
上面我们是通过 muMap 这个互斥锁来保证的。
而Go语言有一个概念:“不要通过共享内存来进行通信,而应该通过通信来共享内存”,也就是利用channel来保证线程安全性。
那么,这又要怎么来做呢?下面是实例代码:
/** * 并发编程,map的线程安全性问题,使用channel的方式 */ package main import ( "time" "fmt" ) var dataCh map[int]int = make(map[int]int) var chMap chan int = make(chan int) func main() { // 并发启动的协程数量 max := 10000 time1 := time.Now().UnixNano() for i := 0; i < max; i++ { go modifyByChan(i) } // 处理channel的服务 chanServ(max) time2 := time.Now().UnixNano() fmt.Printf("data len=%d, time=%d", len(dataCh), (time2-time1)/1000000) } func modifyByChan(i int) { chMap <- i } // 专门处理chMap的服务程序 func chanServ(max int) { for { i := <- chMap dataCh[i] = i if len(dataCh) == max { return } } }
数据填充的方式我们还是用1w个协程来做,只不过使用了chMap这个channel来做队列。
然后在 chanServ 函数中启动一个服务,专门来消费chMap这个队列,然后把数据给map赋值 dataCh[i]=i 。
从上面简单的对比中,我们还看不出太多的区别,我们还是可以得出下面一些结论:
1 通过channel的方式,其实就是通过队列把并发执行的数据读写改成了串行化,以避免线程安全性问题;
2 多个协程交互的时候,可以通过依赖同一个 channel对象来进行数据的读写和传递,而不需要共享变量,可以参考之前的文章《Go实例讲解,利用channel实现协程的互动-会聊天的Tom&Jerry》;
我们再来对比一下程序的执行效率。
使用互斥锁的方式,执行返回数据如下:
data len=10000, time=4
使用channel的方式,执行返回数据如下:
data len=10000, time=35
可以看出,这种很简单的针对map并发读写的场景,通过互斥锁的方式比channel的方式要快很多,毕竟channel的方式增加了channel的读写操作,而且channel的串行化处理,效率上也会低一些。
所以,根据具体的情况,我们可以考虑优先用什么方式来实现。
优先使用互斥锁的场景:
1 复杂且频繁的数据读写操作,如:缓存数据;
2 应用中全局的共享数据,如:全局变量;
优先使用channel的场景:
1 协程之间局部传递共享数据,如:订阅发布模式;
2 统一的数据处理服务,如:库存更新+订单处理;
至此,我们已经通过3个Go实例讲解,知道在并发读写的情况下,如何搞定线程安全性问题,简单的数据结构就是int类型的安全读写,复杂的数据结构分别详细讲解了slice和map。在这次map的讲解中,还对比了互斥锁和channel的方式,希望大家能够对并发编程有更深入的理解。
欢迎关注我的实战课程《PHP秒杀系统 高并发高性能的极致挑战》