手记

JAVA并发编程之Atomic包学习

此篇是J.U.C学习的第一篇Atomic包相关的内容,希望此篇总结能对自己的基础有所提升。本文总结来源自《Java并发编程的艺术》第七章并配以自己的实践理解。如有错误还请指正。

一、案例分析

首先看两段代码:

代码①:

/**
 * @author laoyeye
 * @Description: 5000个线程,200个并发
 * @date 2018/8/16 21:58 */public class IntTest {    // 请求总数
    public static int clientTotal = 5000;    // 同时并发执行的线程数
    public static int threadTotal = 200;    public static int count = 0;    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();        final Semaphore semaphore = new Semaphore(threadTotal);        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    e.printStackTrace();
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println(count);
    }    private static void add() {
        count++;
    }

5000个线程200个并发的情况下,对一个共享变量进行++操作。

结果:4997

代码②:

public class AtomicIntegerTest {    // 请求总数
    public static int clientTotal = 5000;    // 同时并发执行的线程数
    public static int threadTotal = 200;    public static AtomicInteger count = new AtomicInteger(0);    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();        final Semaphore semaphore = new Semaphore(threadTotal);        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {                try {
                    semaphore.acquire();
                    add();
                    semaphore.release();
                } catch (Exception e) {
                    e.printStackTrace();
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println(count);
    }    private static void add() {
        count.incrementAndGet();    }
}

5000个线程200个并发的情况下,同样进行每次加一操作。

结果:5000。和预期的结果一样

那么为什么AtomicInteger可以得到预期的结果,而使用基本数据类型Int的值却不对呢?

主要是原子性的问题,Int的操作,在多线程的情况下并不保证原子性,而AtomicInteger则是一个JDK提供的一个原子操作类,具体AtomicInteger怎么实现的原子性可以看下文。

二、Atomic相关概念

java从JDK1.5开始提供java.util.concurrent.atomic包,即本文所述的Atomic包。这个包的原子操作类提供了一个简单,高效,线程安全地更新一个变量的方式。

因为变量的类型很多,Atomic包基本上分为四种类型的更新方式,分别是原子更新基本类型,原子更新数组,原子更新引用和原子更新属性(字段)。Atomic包的类基本上都是使用Unsafe实现的包装类。 Unsafe 类提供了硬件级别的原子操作,可以安全的直接操作内存变量,其在 JUC 源码中被广泛的使用。

三、原子更新基本类型

1、AtomicBoolen:原子更新布尔类型。

2、AtomicInteger:原子更新整型。

3、AtomicLong:原子更新整型。

AtomicInteger详解

同样以一种的代码②为例,为什么AtomicInteger的incrementAndGet()方法保证了原子性的操作呢,我们来看一下源码的实现:

源码①:

    static {        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

首先我们通过unsafe调用了它的objectFieldOffset(Field field)方法,这个方法返回指定的变量在所属类的内存偏移地址,偏移地址仅仅在该Unsafe函数中访问指定字段时使用。

源码②:

unsafe.getAndAddInt(this, valueOffset, 1) + 1;

   public final int getAndAddInt(Object var1, long var2, int var4) {        int var5;        do {
            var5 = this.getIntVolatile(var1, var2);
        } while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));        return var5;
    }

getIntVolatile获取对象obj中偏移量offset的变量对应的volative内存语义的值,即预期的值var5。

compareAndSwapInt方法中,var1为需要改变的对象,var2为偏移量(即之前求出来的valueOffset的值),var5为expect的值,第四个为update后的值。

当value的值与expect这个值相等,那么则将value修改为update这个值,并返回true,否则返回false。

此操作极为常说的CAS原子操作,这里使用while循环是考虑到多个线程同时调用的情况CAS失败后需要自旋重试。

AtomicBoolen详解

代码③

public class AtomicBooleanTest {        // 请求总数
        public static int clientTotal = 5000;        // 同时并发执行的线程数
        public static int threadTotal = 200;        public static AtomicBoolean isHappened = new AtomicBoolean(false);        public static void main(String[] args) throws Exception {
            ExecutorService executorService = Executors.newCachedThreadPool();            final Semaphore semaphore = new Semaphore(threadTotal);            final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);            for (int i = 0; i < clientTotal; i++) {
                executorService.execute(() -> {                    try {
                        semaphore.acquire();
                        test();
                        semaphore.release();
                    } catch (Exception e) {
                        e.printStackTrace();
                    }
                    countDownLatch.countDown();
                });
            }
            countDownLatch.await();
            executorService.shutdown();
            System.out.println(isHappened.get());
        }        private static void test() {            if (isHappened.compareAndSet(false, true)) {
                System.out.println("execute");
            }
        }
    }

执行结果:

execute
true

通过结果可知System.out.println("execute");的代码只执行过一次,200的并发,为什么只执行了一次呢,我们再来看下源码的解决办法。

源码③

    public final boolean compareAndSet(boolean expect, boolean update) {        int e = expect ? 1 : 0;        int u = update ? 1 : 0;        return unsafe.compareAndSwapInt(this, valueOffset, e, u);
    }

我们看到当调用compareAndSet方法时,先把Boolean型转换为整型,在使用compareAndSwapInt进行CAS。所以即使在200并发的情况下,AtomicBoolen依旧能够保持原子性。

通过上面两个类的讲解我们看到都是使用的compareAndSwapInt的方法,unsafe类还提供了compareAndSwapLong,用于AtomicLong,以及compareAndSwapObject方法。而像char,float,double等数据类型没有对应的原子操作类,这时候我们可以参考AtomicBoolen的思路做类似处理。

 四、原子更新数组

1、AtomicIntegerArray:原子更新整型数组里的元素

2、AtomicLongArray:原子更新长整型数组里的元素

3、AtomicReferenceArray:原子更新引用类型数组里的元素

这里我们只介绍下AtomicIntegerArray,基本操作类似。

代码④

public class AtomicIntegerArrayTest {    // 请求总数
    public static int clientTotal = 5000;    // 同时并发执行的线程数
    public static int threadTotal = 200;    static int[] value = new int[]{1,2};    public static AtomicIntegerArray ai = new AtomicIntegerArray(value);    public static void main(String[] args) throws Exception {
        ExecutorService executorService = Executors.newCachedThreadPool();        final Semaphore semaphore = new Semaphore(threadTotal);        final CountDownLatch countDownLatch = new CountDownLatch(clientTotal);        for (int i = 0; i < clientTotal ; i++) {
            executorService.execute(() -> {                try {
                    semaphore.acquire();
                    test();
                    semaphore.release();
                } catch (Exception e) {
                    e.printStackTrace();
                }
                countDownLatch.countDown();
            });
        }
        countDownLatch.await();
        executorService.shutdown();
        System.out.println(ai.get(0));
        System.out.println(value[0]);
    }    private static void test() {
        ai.getAndSet(0,3);
    }
}

结果:3,1

为什么是3和1呢,同样的我们从源码中找答案。

源码④:

    public final int getAndSet(int i, int newValue) {        return unsafe.getAndSetInt(array, checkedByteOffset(i), newValue);
    }

    public final int getAndSetInt(Object var1, long var2, int var4) {        int var5;        do {
            var5 = this.getIntVolatile(var1, var2);
        } while(!this.compareAndSwapInt(var1, var2, var5, var4));        return var5;
    }

同样的原理,当前位置的数组value的值和预期的值相等,然后将对应的元素更新为新的值。但是需要注意的是,AtomicIntegerArray会将当前数组复制一份,所以当AtomicIntegerArray对内部的数组元素进行修改后,不会影响到原先的数组。

五、原子更新引用类型

1、AtomicReference:原子更新引用类型

2、AtomicStampedReference:更新带有版本号的引用类型,可解决CAS的ABA问题

3、AtomicMarkableReference:原子更新带有标记位的引用类型

 原子更新基本类型每次只能更新一个变量,如果要原子更新更多变量,这时候就需要引用类型了。

代码⑤

public class AtomicReferenceTest {    public static void main(String[] args) {
        User user1 = new User("张三",12);
        User user2 = new User("lisi",20);
        AtomicReference<User> ar = new AtomicReference<User>();
        ar.set(user1);
        ar.compareAndSet(user1, user2);

        System.out.println("user " + ar.get().getName());
    }static class User {    private String name;    private int old;    public String getName() {        return name;
    }    public int getOld() {        return old;
    }    public void setName(String name) {        this.name = name;
    }    public void setOld(int old) {        this.old = old;
    }    public User(String name, int old) {        this.name = name;        this.old = old;
    }
}
}

结果:user lisi

可以看到结果已经原子更新为lisi了,年龄也同步更新。

代码⑥

public class AtomicMarkableReferenceTest {    public static void main(String[] args) {


        User user1 = new User("张三",12);
        User user2 = new User("lisi",20);

        AtomicStampedReference ar = new AtomicStampedReference(user1,0);        final  Integer stamp = ar.getStamp();

        ar.compareAndSet(user1, user2,stamp,stamp+10);

        System.out.println("user " + ((User)ar.getReference()).getName());
        System.out.println("user " + ar.getStamp());

        System.out.println( ar.compareAndSet(user1, user2, stamp,stamp+10));
    }static class User {    private String name;    private int old;    public String getName() {        return name;
    }    public int getOld() {        return old;
    }    public void setName(String name) {        this.name = name;
    }    public void setOld(int old) {        this.old = old;
    }    public User(String name, int old) {        this.name = name;        this.old = old;
    }
}
}

结果:

user lisi
user 10
false

可以看到我们在做了原子更新后,版本号也做了改变,这时候如果还用原来的版本号去更新,就会出现更新失败的情况。

AtomicMarkableReference跟AtomicStampedReference类似 
AtomicStampedReference是使用pair的int stamp作为计数器使用,AtomicMarkableReference的pair使用的是boolean mark。 
就像一杯水,AtomicStampedReference可能关心的是动过几次,AtomicMarkableReference关心的是有没有被人动过,方法都比较简单,不在演示了。

六、原子更新字段类

1、AtomicIntegerFieldUpdater:更新整型字段

2、AtomicLongFieldUpdater:更新长整型字段

3、AtomicReferenceFieldUpdater:原子更新引用类型里的字段

public class AtomicIntegerFieldUpdaterTest {    private static AtomicIntegerFieldUpdater<AtomicIntegerFieldUpdaterTest> updater =
            AtomicIntegerFieldUpdater.newUpdater(AtomicIntegerFieldUpdaterTest.class, "count");    public volatile int count = 100;    public static void main(String[] args) {

        AtomicIntegerFieldUpdaterTest ai = new AtomicIntegerFieldUpdaterTest();        if (updater.compareAndSet(ai, 100, 120)) {
            System.out.println("方法1,"+ai.getCount());
        }        if (updater.compareAndSet(ai, 100, 120)) {
            System.out.println("方法2,"+ai.getCount());
        } else {
            System.out.println("方法3,"+ai.getCount());
        }
    }    public int getCount() {        return count;
    }    public void setCount(int count) {        this.count = count;
    }
}

结果:

方法1,120
方法3,120

 原子更新字段类需要两部,①必须使用静态方法newupdate()创建一个更新器,并且设置想要更新的类和属性。第二步,更新类的字段属性必须使用public volatile修饰

 七、1.8新增的LongAdder相关类

这个类是1.8新增的一个类,为什么在已经有AtomicLong的情况下,还是增加了这个类呢?

这主要是由于AtomicLong CAS算法的缺陷造成的,众所周知,CAS是比较当前值与预期的值是否相等,相等则更新为新的值,否则重新自旋取值。这就造成了CAS在高并发情况性下大量失败,性能较低的情况。

既然AtomicLong性能问题是由于过多线程同时去竞争同一个变量的更新而降低的,那么如果把一个变量分解为多个变量,让同样多的线程去竞争多个资源,那么性能问题不就迎刃而解了吗?

没错,因此,JDK8 提供的LongAdder就是这个思路。这个类我目前只在网上了解到原理,还未应用也不了解源码实现,等以后再更新吧。

下文来自简书:https://www.jianshu.com/p/22d38d5c8c2a

总结分析下LongAdder减少冲突的方法以及在求和场景下比AtomicLong更高效的原因

  • 首先和AtomicLong一样,都会先采用cas方式更新值

  • 在初次cas方式失败的情况下(通常证明多个线程同时想更新这个值),尝试将这个值分隔成多个cell(sum的时候求和就好),让这些竞争的线程只管更新自己所属的cell(因为在rehash之前,每个线程中存储的hashcode不会变,所以每次都应该会找到同一个cell),这样就将竞争压力分散了

AtomicLong可否可以被LongAdder替代

有了传说中更高效的LongAdder,那AtomicLong可否不使用了呢?当然不是!

答案就在LongAdder的java doc中,从我们翻译的那段可以看出,LongAdder适合的场景是统计求和计数的场景,而且LongAdder基本只提供了add方法,而AtomicLong还具有cas方法(要使用cas,在不直接使用unsafe之外只能借助AtomicXXX了),,例如getAndIncrement、getAndDecrement等,使用起来非常的灵活,而LongAdder只有add和sum,使用起来比较受限。

原文出处:https://www.cnblogs.com/laoyeye/p/9496936.html

0人推荐
随时随地看视频
慕课网APP