手记

GAN 的 keras 实现

本文结构:

  • 什么是 GAN?

  • 优点?

  • keras 例子?


什么是 GAN?

GAN,全称为 Generative Adversarial Nets,直译为生成式对抗网络,是一种非监督式模型。

一种应用是生成在原始数据集中不存在的但是却比较合理的数据,还可以拓展一张图片,生成下一帧影像,由简单几笔生成一幅画:

模型:

主要有两部分:

The Generative Model:通过输入任意随机数据,尝试生成一些真实的东西(曲线,图像,声音,文本,...)

The Discriminative Model:试图判定哪些是虚假的数据,来减小对真实数据的误报。


优点:

Markov chains are never needed
避免了计算复杂度特别高的过程,直接进行采样和推断,应用效率相应提高。

a wide variety of functions can be incorporated into the model
针对不同的任务就可以设计不同类型的损失函数。

can represent very sharp, even degenerate distributions


Keras 例子:

任务:生成 sin 曲线。

%matplotlib inlineimport osimport randomimport numpy as npimport pandas as pdimport matplotlib.pyplot as pltimport seaborn as snsfrom tqdm import tqdm_notebook as tqdmfrom keras.models import Modelfrom keras.layers import Input, Reshapefrom keras.layers.core import Dense, Activation, Dropout, Flattenfrom keras.layers.normalization import BatchNormalizationfrom keras.layers.convolutional import UpSampling1D, Conv1Dfrom keras.layers.advanced_activations import LeakyReLUfrom keras.optimizers import Adam, SGDfrom keras.callbacks import TensorBoard

1. Generative model:

输入:noise data
输出:尝试生成真实的 sin 数据

def get_generative(G_in, dense_dim=200, out_dim=50, lr=1e-3):
    x = Dense(dense_dim)(G_in)
    x = Activation('tanh')(x)
    G_out = Dense(out_dim, activation='tanh')(x)
    G = Model(G_in, G_out)
    opt = SGD(lr=lr)
    G.compile(loss='binary_crossentropy', optimizer=opt)    return G, G_out

2. Discriminative model:

输出:识别此数据是真实的,还是由 Generative model 生成的

def get_discriminative(D_in, lr=1e-3, drate=.25, n_channels=50, conv_sz=5, leak=.2):
    x = Reshape((-1, 1))(D_in)
    x = Conv1D(n_channels, conv_sz, activation='relu')(x)
    x = Dropout(drate)(x)
    x = Flatten()(x)
    x = Dense(n_channels)(x)
    D_out = Dense(2, activation='sigmoid')(x)
    D = Model(D_in, D_out)
    dopt = Adam(lr=lr)
    D.compile(loss='binary_crossentropy', optimizer=dopt)    return D, D_out

3. chain the two models into a GAN:

set_trainability 的作用是每次训练 generator 时要冻住 discriminator。

def set_trainability(model, trainable=False):
    model.trainable = trainable    for layer in model.layers:
        layer.trainable = trainable        
def make_gan(GAN_in, G, D):
    set_trainability(D, False)
    x = G(GAN_in)
    GAN_out = D(x)
    GAN = Model(GAN_in, GAN_out)
    GAN.compile(loss='binary_crossentropy', optimizer=G.optimizer)    return GAN, GAN_out

4. Training:

交替训练 discriminator  和 chained GAN,在训练 chained GAN 时要冻住 discriminator  的参数:

def sample_noise(G, noise_dim=10, n_samples=10000):
    X = np.random.uniform(0, 1, size=[n_samples, noise_dim])
    y = np.zeros((n_samples, 2))
    y[:, 1] = 1
    return X, ydef train(GAN, G, D, epochs=500, n_samples=10000, noise_dim=10, batch_size=32, verbose=False, v_freq=50):
    d_loss = []
    g_loss = []
    e_range = range(epochs)    if verbose:
        e_range = tqdm(e_range)    for epoch in e_range:
        X, y = sample_data_and_gen(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, True)
        d_loss.append(D.train_on_batch(X, y))
        
        X, y = sample_noise(G, n_samples=n_samples, noise_dim=noise_dim)
        set_trainability(D, False)
        g_loss.append(GAN.train_on_batch(X, y))        if verbose and (epoch + 1) % v_freq == 0:
            print("Epoch #{}: Generative Loss: {}, Discriminative Loss: {}".format(epoch + 1, g_loss[-1], d_loss[-1]))    return d_loss, g_loss

d_loss, g_loss = train(GAN, G, D, verbose=True)

5. Results:

N_VIEWED_SAMPLES = 2
data_and_gen, _ = sample_data_and_gen(G, n_samples=N_VIEWED_SAMPLES)
pd.DataFrame(np.transpose(data_and_gen[N_VIEWED_SAMPLES:])).rolling(5).mean()[5:].plot()


1人推荐
随时随地看视频
慕课网APP