交通流量预测在智能交通(ITS)系统中占有重要地位,是实现交通诱导的前提。准确实时的短时交通流预测有助于更好的分析路网交通状况,对路网交通规划和交通优化控制有非常重要的作用。随着交通数据采集技术的不断发展,及时获取路网中实时的交通数据已成为可能,大量的交通信息为基于深度学习的预测模型提供了数据保障。
基于神经网络的交通流预测的相关研究如下列论文所示。由于与我的研究方向相关,在本文中我实现了基于SAEs、RNN的交通流量预测模型。
Paper:
Traffic Flow Prediction With Big Data: A Deep Learning Approach
Using LSTM and GRU neural network methods for traffic flow prediction
Github:https://github.com/xiaochus/TrafficFlowPrediction
环境
Python 3.5
Tensorflow-gpu 1.2.0
Keras 2.1.3
scikit-learn 0.18
数据处理
实验数据是从Caltrans Performance Measurement System (PeMS)获取的。原始的流量数据是一个长度为n的一维数据。我们首先使用训练集的数据实现一个标准化对象scaler,然后使用scaler分别对训练集与测试集进行标准化。
由于时序预测任务需要使用历史数据对未来数据进行预测,我们使用时滞变量lags对数据进行划分,最后获得大小为(samples, lags)的数据集。
划分好的数据集在排列顺序上依旧带有时序特性,虽然keras在训练时可以选择对数据进行混洗,但是其执行顺序是先对val数据进行采样再进行混洗,采样过程依旧是按照顺序来的。因此我们事先使用np.random.shuffle对数据进行混洗,打乱数据的顺序。
def process_data(train, test, lags): """Process data Reshape and split train\test data. # Arguments train: String, name of .csv train file. test: String, name of .csv test file. lags: integer, time lag. # Returns X_train: ndarray. y_train: ndarray. X_test: ndarray. y_test: ndarray. scaler: StandardScaler. """ attr = 'Lane 1 Flow (Veh/5 Minutes)' df1 = pd.read_csv(train, encoding='utf-8').fillna(0) df2 = pd.read_csv(test, encoding='utf-8').fillna(0) # scaler = StandardScaler().fit(df1[attr].values) scaler = MinMaxScaler(feature_range=(0, 1)).fit(df1[attr].values) flow1 = scaler.transform(df1[attr].values) flow2 = scaler.transform(df2[attr].values) train, test = [], [] for i in range(lags, len(flow1)): train.append(flow1[i - lags: i + 1]) for i in range(lags, len(flow2)): test.append(flow2[i - lags: i + 1]) train = np.array(train) test = np.array(test) np.random.shuffle(train) X_train = train[:, :-1] y_train = train[:, -1] X_test = test[:, :-1] y_test = test[:, -1] return X_train, y_train, X_test, y_test, scaler
模型
LSTM
2隐层LSTM网络。
LSTM.png
def get_lstm(units): """LSTM(Long Short-Term Memory) Build LSTM Model. # Arguments units: List(int), number of input, output and hidden units. # Returns model: Model, nn model. """ model = Sequential() model.add(LSTM(units[1], input_shape=(units[0], 1), return_sequences=True)) model.add(LSTM(units[2])) model.add(Dropout(0.2)) model.add(Dense(units[3], activation='linear')) return model
GRU
2隐层GRU网络。
GRU.png
def get_gru(units): """GRU(Gated Recurrent Unit) Build GRU Model. # Arguments units: List(int), number of input, output and hidden units. # Returns model: Model, nn model. """ model = Sequential() model.add(GRU(units[1], input_shape=(units[0], 1), return_sequences=True)) model.add(GRU(units[2])) model.add(Dropout(0.2)) model.add(Dense(units[3], activation='linear')) return model
SAEs
SAEs.png
Auto-Encoders的原理是先通过一个encode层对输入进行编码,这个编码就是特征,然后利用encode乘第2层参数(也可以是encode层的参数的转置乘特征并加偏执),重构(解码)输入,然后用重构的输入和实际输入的损失训练参数。
这里我们构建了三个单独的自动编码器,并按照相同的隐层结构构建了一个三层的SAEs。
def _get_sae(inputs, hidden, output): """SAE(Auto-Encoders) Build SAE Model. # Arguments inputs: Integer, number of input units. hidden: Integer, number of hidden units. output: Integer, number of output units. # Returns model: Model, nn model. """ model = Sequential() model.add(Dense(hidden, input_dim=inputs, name='hidden')) model.add(Activation('sigmoid')) model.add(Dropout(0.2)) model.add(Dense(output)) return modeldef get_saes(layers): """SAEs(Stacked Auto-Encoders) Build SAEs Model. # Arguments layers: List(int), number of input, output and hidden units. # Returns models: List(Model), List of SAE and SAEs. """ sae1 = _get_sae(layers[0], layers[1], layers[-1]) sae2 = _get_sae(layers[1], layers[2], layers[-1]) sae3 = _get_sae(layers[2], layers[3], layers[-1]) saes = Sequential() saes.add(Dense(layers[1], input_dim=layers[0], name='hidden1')) saes.add(Activation('sigmoid')) saes.add(Dense(layers[2], name='hidden2')) saes.add(Activation('sigmoid')) saes.add(Dense(layers[3], name='hidden3')) saes.add(Activation('sigmoid')) saes.add(Dropout(0.2)) saes.add(Dense(layers[4])) models = [sae1, sae2, sae3, saes] return models
训练
LSTM、GRU按照正常的RNN网络进行训练。使用train_model()函数训练。
SAEs的训练过程:多个SAE分别训练,第一个SAE训练完之后,其encode的输出作为第二个SAE的输入,接着训练。最后训练完后,将所有SAE的中间隐层连接起来组成一个SAEs网络,使用之前的权值作为初始化权值,再对整个网络进行fine-tune。使用train_seas()函数训练。
使用RMSprop(lr=0.001, rho=0.9, epsilon=1e-06)作为优化器,batch_szie为256,lags为12(即时滞长度为一个小时)。
def train_model(model, X_train, y_train, name, config): """train train a single model. # Arguments model: Model, NN model to train. X_train: ndarray(number, lags), Input data for train. y_train: ndarray(number, ), result data for train. name: String, name of model. config: Dict, parameter for train. """ model.compile(loss="mse", optimizer="rmsprop", metrics=['mape']) # early = EarlyStopping(monitor='val_loss', patience=30, verbose=0, mode='auto') hist = model.fit( X_train, y_train, batch_size=config["batch"], epochs=config["epochs"], validation_split=0.05) model.save('model/' + name + '.h5') df = pd.DataFrame.from_dict(hist.history) df.to_csv('model/' + name + ' loss.csv', encoding='utf-8', index=False)def train_seas(models, X_train, y_train, name, config): """train train the SAEs model. # Arguments models: List, list of SAE model. X_train: ndarray(number, lags), Input data for train. y_train: ndarray(number, ), result data for train. name: String, name of model. config: Dict, parameter for train. """ temp = X_train # early = EarlyStopping(monitor='val_loss', patience=30, verbose=0, mode='auto') for i in range(len(models) - 1): if i > 0: p = models[i - 1] hidden_layer_model = Model(input=p.input, output=p.get_layer('hidden').output) temp = hidden_layer_model.predict(temp) m = models[i] m.compile(loss="mse", optimizer="rmsprop", metrics=['mape']) m.fit(temp, y_train, batch_size=config["batch"], epochs=config["epochs"], validation_split=0.05) models[i] = m saes = models[-1] for i in range(len(models) - 1): weights = models[i].get_layer('hidden').get_weights() saes.get_layer('hidden%d' % (i + 1)).set_weights(weights) train_model(saes, X_train, y_train, name, config)
实验
评估
在这里使用MAE、MSE、RMSE、MAPE、R2、explained_variance_score几个指标对回归预测结果进行评估。
def MAPE(y_true, y_pred): """Mean Absolute Percentage Error Calculate the mape. # Arguments y_true: List/ndarray, ture data. y_pred: List/ndarray, predicted data. # Returns mape: Double, result data for train. """ y = [x for x in y_true if x > 0] y_pred = [y_pred[i] for i in range(len(y_true)) if y_true[i] > 0] num = len(y_pred) sums = 0 for i in range(num): tmp = abs(y[i] - y_pred[i]) / y[i] sums += tmp mape = sums * (100 / num) return mapedef eva_regress(y_true, y_pred): """Evaluation evaluate the predicted resul. # Arguments y_true: List/ndarray, ture data. y_pred: List/ndarray, predicted data. """ mape = MAPE(y_true, y_pred) vs = metrics.explained_variance_score(y_true, y_pred) mae = metrics.mean_absolute_error(y_true, y_pred) mse = metrics.mean_squared_error(y_true, y_pred) r2 = metrics.r2_score(y_true, y_pred) print('explained_variance_score:%f' % vs) print('mape:%f%%' % mape) print('mae:%f' % mae) print('mse:%f' % mse) print('rmse:%f' % math.sqrt(mse)) print('r2:%f' % r2)
预测
我们使用训练好的模型对测试集进行预测。
def main(): lstm = load_model('model/lstm.h5') gru = load_model('model/gru.h5') saes = load_model('model/saes.h5') models = [lstm, gru, saes] names = ['LSTM', 'GRU', 'SAEs'] lag = 12 file1 = 'data/train.csv' file2 = 'data/test.csv' _, _, X_test, y_test, scaler = process_data(file1, file2, lag) y_test = scaler.inverse_transform(y_test) y_preds = [] for name, model in zip(names, models): if name == 'SAEs': X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1])) else: X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) file = 'images/' + name + '.png' plot_model(model, to_file=file, show_shapes=True) predicted = model.predict(X_test) predicted = scaler.inverse_transform(predicted) y_preds.append(predicted[:300]) print(name) eva_regress(y_test, predicted) plot_results(y_test[: 300], y_preds, names)
预测精度对比如下所示:
Metrics | MAE | MSE | RMSE | MAPE | R2 | Explained variance score |
---|---|---|---|---|---|---|
LSTM | 7.16 | 94.20 | 9.71 | 21.25% | 0.9420 | 0.9421 |
GRU | 7.18 | 95.01 | 9.75 | 17.42% | 0.9415 | 0.9415 |
SAEs | 7.71 | 106.46 | 10.32 | 25.62% | 0.9344 | 0.9352 |
预测结果对比如下所示:
eva.png
作者:洛荷
链接:https://www.jianshu.com/p/1d1c5adf43c6
热门评论
您好,如果是那个saes的预测输出层改成SVR来做预测代码该怎么写呢?谢谢