手记

机器学习三剑客之Pandas

pandas

Pandas是基于Numpy开发出的,专门用于数据分析的开源Python库

Pandas的两大核心数据结构

  • Series(一维数据)

Series

创建Series的方法

允许索引重复

  • DataFrame(多特征数据,既有行索引,又有列索引)

DataFrame

索引方法

# 创建一个3行4列的DataFrame类型数据data_3_4 = pd.DataFrame(np.arange(10, 22).reshape(3, 4))# 打印数据print(data_3_4)# 打印第一行数据print(data_3_4[:1])# 打印第一列数据print(data_3_4[:][0])
  • DataFrame的属性

原始数据

DataFrame的属性

# 读取数据result = pd.read_csv("./students_score.csv")# 数据的形状result.shape# 每列数据的 类型信息result.dtypes# 数据的维数result.ndim# 数据的索引(起/始/步长)result.index# 打印每一列 属性的名称result.columns# 将数据放到数组中显示result.values

整体查询

# 打印前5个print("-->前5个:")
print(result.head(5))# 打印后5个print("-->后5个:")
print(result.tail(5))# 打印描述信息(实验中好用)print("-->描述信息:")
print(result.describe())

Panda数据读取(以csv为例)

pandas.read_csv(filepath_or_buffer, sep=",", names=None, usecols = None)

filepath_or_buffer : 文件路径(本地路径或url路径)
sep: 分隔符
names: 列索引的名字
usecols: 指定读取的列名

返回的类型: DataFrame

读取并返回数据

  • Dataframe通过布尔索引过滤数据

布尔索引

# 布尔索引(查询) 找出年龄大于23岁的人result[result["age"]>23]

小案例: 分析2006年至2016年1000部IMDB电影数据

2006年----2016年IMDB最受欢迎的1000部电影

评分降序排列

统计时长

IMDB_1000 = pd.read_csv("./IMDB-Movie-Data.csv")# 获取数据字段print(IMDB_1000.dtypes)# 根据1000部电影评分进行降序排列,参数ascending, 默认为True(升序), 这里为False(降序)IMDB_1000.sort_values(by="Rating", ascending=False)# 时间最长的电影IMDB_1000[IMDB_1000["Runtime (Minutes)"]==IMDB_1000["Runtime (Minutes)"].max()]# 时间最短的电影IMDB_1000[IMDB_1000["Runtime (Minutes)"]==IMDB_1000["Runtime (Minutes)"].min()]# 电影时长平均值IMDB_1000["Runtime (Minutes)"].mean()

数据处理

  • 存在缺失值, 直接删除数据(删除存在缺失值的样本)

删除存在缺失值的样本

# 删除存在缺失值的样本IMDB_1000.dropna()

不推荐的操作: 按列删除缺失值为IMDB_1000.dropna(axis=1)

  • 存在缺失值, 直接填充数据fillna

填充空缺值

使用平均值填充数据

# 为一些电影缺失的总票房添加平均值IMDB_1000["Revenue (Millions)"].fillna(IMDB_1000["Revenue (Millions)"].mean(), inplace=True)

小案例: 乳腺癌数据预处理 (在线获取数据,并替换缺失符号为标准缺失符号np.nan)

替换默认的缺失符号

各列命名

读取原始数据

# 在线读取数据,并按照说明文档, 并对各列信息进行命名bcw = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data", names=["Sample code number","Clump Thickness","Uniformity of Cell Size","Uniformity of Cell Shape", "Marginal Adhesion","Single Epithelial Cell Size","Bare Nuclei","Bland Chromatin","Normal Nucleoli","Mitoses","Class:"])

预处理,把?替换为np.nan

小案例: 日期格式转换 数据来源

facebook

日期格式转换

# 读取前10行数据train = pd.read_csv("./train.csv", nrows = 10)# 将数据中的time转换为最小分度值为秒(s)的计量单位train["time"] = pd.to_datetime(train["time"], unit="s")
  • 从日期中拆分出新的列

新增列

# 新增列year, month, weekdaytrain["year"] = pd.DatetimeIndex(train["time"]).year
train["month"] = pd.DatetimeIndex(train["time"]).month
train["weekday"] = pd.DatetimeIndex(train["time"]).weekday

数据表的合并(merge)

数据

user_info.csvuser_id,姓名,age1,徐三,23
2,徐四,22
3,宝儿,210
4,楚岚,21
5,王也,24
6,诸葛青,21
7,天师,89
8,吕梁,24
9,夏禾,26
goods_info.csvgoods_id,goods_nameG10,三只松鼠G12,MacBookG13,iPadG14,iPhone
order_info.csvorder_id,use_id,goods_nameas789,1,三只松鼠sd567,2,MacBookhj456,4,iPad

合并过程

# 读取3张表user_info = pd.read_csv("./user_info.csv")
order_info = pd.read_csv("./order_info.csv")
goods_info = pd.read_csv("./goods_info.csv")# 合并三张表u_o = pd.merge(user_info, order_info, how="left", on=["user_id", "user_id"])
u_o_g = pd.merge(u_o, goods_info, how="left", on=["goods_name", "goods_name"])
  • 建立交叉表(用于计算分组的频率)

交叉表

# 交叉表, 表示出用户姓名,和商品名之间的关系user_goods = pd.crosstab(u_o_g["姓名"],u_o_g["goods_name"])

Pandas的分组和聚合(重要)

小案例: 星巴克全球分布情况       数据来源

全球星巴克分布情况


读取全球星巴克的位置数据

每个国家星巴克的数量

每个国家每个省份星巴克的数量

starbucks = pd.read_csv("./directory.csv")# 统计每个国家星巴克的数量starbucks.groupby(["Country"]).count()# 统计每个国家 每个省份 星巴克的数量starbucks.groupby(["Country", "State/Province"]).count()
  • 全球各国星巴克数量排名

全球星巴克数量排名




1人推荐
随时随地看视频
慕课网APP