在现实的生活中,我们可能会遇到一些美好的或是珍贵的图片被噪声干扰,比如旧照片的折痕,比如镜头上的灰尘或污渍,更或者是某些我们想为我所用但有讨厌水印,那么有没有一种办法可以消除这些噪声呢?
答案是肯定的,依然是被我们用了无数次的OpenCV这款优秀的框架。
效果预览那OpenCV究竟是怎么实现的,简单的来说就是开发者标定噪声的特征,在使用噪声周围的颜色特征推理出应该修复的图片的颜色,从而实现图片修复的。
程序实现解析- 标定噪声的特征,使用cv2.inRange二值化标识噪声对图片进行二值化处理,具体代码:cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255])),把[240, 240, 240]~[255, 255, 255]以外的颜色处理为0;
- 使用OpenCV的dilate方法,扩展特征的区域,优化图片处理效果;
- 使用inpaint方法,把噪声的mask作为参数,推理并修复图片;
#coding=utf-8
#图片修复
import cv2
import numpy as np
path = "img/inpaint.png"
img = cv2.imread(path)
hight, width, depth = img.shape[0:3]
#图片二值化处理,把[240, 240, 240]~[255, 255, 255]以外的颜色变成0
thresh = cv2.inRange(img, np.array([240, 240, 240]), np.array([255, 255, 255]))
#创建形状和尺寸的结构元素
kernel = np.ones((3, 3), np.uint8)
#扩张待修复区域
hi_mask = cv2.dilate(thresh, kernel, iterations=1)
specular = cv2.inpaint(img, hi_mask, 5, flags=cv2.INPAINT_TELEA)
cv2.namedWindow("Image", 0)
cv2.resizeWindow("Image", int(width / 2), int(hight / 2))
cv2.imshow("Image", img)
cv2.namedWindow("newImage", 0)
cv2.resizeWindow("newImage", int(width / 2), int(hight / 2))
cv2.imshow("newImage", specular)
cv2.waitKey(0)
cv2.destroyAllWindows()
图片扩展与腐蚀更多资料:http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_morphological_ops/py_morphological_ops.html
原创首发于慕课网
热门评论
图六图为证推荐路途太遥远wwwwwwttttt