手记

一文读懂Python装饰器由来(一)

Python装饰器是非常不错的特性,熟练掌握装饰器会让你的编程思路更加宽广,程序也更加pythonic。下面就让我们一起来探讨一下python的装饰器吧。

装饰器的存在是为了适用两个场景,一个是增强被装饰函数的行为,另一个是代码重用。

先看一个例子,直观的感受一下:


  1. import time

  2. def out_wrapper(func):

  3.    def inner_wrapper():

  4.        start_time = time.time()

  5.        func()

  6.        stop_time = time.time()

  7.        print('Used time {}'.format(stop_time-start_time))

  8.    return inner_wrapper

  9. @out_wrapper

  10. def test1():

  11.    time.sleep(1)

  12.    print('I am test1!')

输出:


  1. I am test1!

  2. Used time 1.0000572204589844

这个装饰器是用来计算函数执行时间的。原本test1函数只是休眠1秒,然后输出字符串,但是在使用装饰器(out_wrapper)后,它的功能多了一项:输出执行时间。 这是一个最简单的装饰器,实现了 “增强被装饰函数的行为”。而我们需要思考的是为什么装饰器是这个样子的? 那是因为行为良好的装饰器必须要遵守两个原则:

1、不能修改被装饰函数的代码;

2、不能修改被装饰函数的调用方式;

这并不难以理解,因为在生产环境中如果我们要给某个函数添加功能,最好不要修改该函数的源码,因为可能造成意想不到的影响,或者这个代码是一个大神写的,你根本不知从何改起;同时你也不能修改其调用方式,因为你不知道程序中有多少地方调用了此函数。

那么我们从函数和函数名说起吧。


  1. def func(name):

  2.    print('I am {}!'.format(name))

  3. func('li')

  4. y = func

  5. y('liu')

输出:


  1. I am li!

  2. I am liu!

定义函数func,调用函数func,将函数名func赋值给y,调用y。y=func 表明:函数名可以赋值给变量,并且并不影响调用。

这其实和整数、数字是一样的:


  1. a = 1

  2. b = a

  3. print(a, b)

明白了这一点,下面再说说高阶函数: 高阶函数满足如下两个条件中的任意一个: a. 可以接收函数名作为实参; b. b.返回值中可以包含函数名;

其实python标准库中的map和filter等函数就是高阶函数。


  1. l = [1, 2, 4]

  2. r = map(lambda x: x*3, l)

  3. for i in r:

  4.    print(i)

自定义一个能返回函数的函数,也是高阶函数


  1. def f(l):

  2.    return map(lambda x: x*5, l)

  3. a = f(l)

  4. for i in a:

  5.    print(i)

有了这些基础,我们就可以尝试实现一下类似装饰器的功能了。


  1. def out(func):

  2.    print('Add a function.')

  3.    return func

  4. def test1():

  5.    time.sleep(1)

  6.    print('I am test1!')

  7. temp = out(test1)

  8. temp()

输出:


  1. Add a function.

  2. I am test1!

还是第一个例子中的test1函数,我们定义了一个函数out,out接收一个函数名然后直接返回该函数名。这样,我们实现了不修改原函数test1,并且添加了一个新功能的需求,但是缺陷就是调用方式改变了。如何解决这个问题呢?其实很简单,相信 a = a * 3 这样的表达式我们都见过,那么上述代码中的temp = out(test1) 同样可以修改为 test1 = out(test1),这样我们就完美的解决了问题:既添加了新功能又没有修改原函数和其调用方式。修改后的代码如下:


  1. def out(func):

  2.    print('Add a function.')

  3.    return func

  4. def test1():

  5.    time.sleep(1)

  6.    print('I am test1!')

  7. test1 = out(test1)

  8. test1()

只是美中不足的事每次需要使用装饰器的时候,都要在写一句类似test1 = out(test1) 的代码。python为了简化这种情况,提供了一个语法糖@,在每个被装饰的函数上方使用这个语法糖就可以省掉这一句代码test1 = out(test1)。如下:


  1. def out(func):

  2.    print('Add a function.')

  3.    return func

  4. @out

  5. def test1():

  6.    time.sleep(1)

  7.    print('I am test1!')

  8. # test1 = out(test1)

  9. test1()

至此,我们搞清楚了装饰器的工作原理,但是对比开篇的例子,还是有些不一样。这又是为什么呢? 开篇例子实现的是输出被装饰函数的执行时间,那么必须在函数执行之前记录一下时间,函数执行之后记录一下时间,这样才能计算出函数的执行时间,但是我们现在是直接返回了函数名,这样函数调用后我们就没办法做任何事情了,所以此时我们需要在嵌套一层函数,将实现额外功能的部分写在内层函数中,然后将这个内层函数返回即可。这也是为什么装饰器都是嵌套函数的原因。 另外,开篇的例子并没有返回值,也没有参数,要对既有参数又有返回值的函数进行装饰的话,还需要进一步完善。 能够处理返回值的装饰器:


  1. import time

  2. def out_wrapper(func):

  3.    def inner_wrapper():

  4.        start_time = time.time()

  5.        result = func()

  6.        stop_time = time.time()

  7.        print('Used time {}'.format(stop_time - start_time))

  8.        return result

  9.    return inner_wrapper

  10. @out_wrapper

  11. def test1():

  12.    time.sleep(1)

  13.    print('I am {test1}!')

  14.    return 'test1 return'

  15. x = test1()

  16. print(x)

输出:


  1. I am {test1}!

  2. Used time 1.0000572204589844

  3. test1 return

能够处理参数的装饰器:


  1. def out_wrapper(func):

  2.    def inner_wrapper(*args, **kwargs):

  3.        start_time = time.time()

  4.        result = func(*args, **kwargs)

  5.        stop_time = time.time()

  6.        print('Used time {}'.format(stop_time - start_time))

  7.        return result

  8.    return inner_wrapper

  9. @out_wrapper

  10. def test1(args):

  11.    time.sleep(1)

  12.    print('I am {}!'.format(args))

  13.    return 'test1 return'

  14. x = test1('li')

  15. y = test1('liu')

  16. print(x, y)

输出:


  1. I am li!

  2. Used time 1.0000569820404053

  3. I am liu!

  4. Used time 1.0000572204589844

  5. test1 return test1 return

总结:装饰器的本质是函数,其参数是另一个函数(被装饰的函数)。 装饰器通常会额外处理被装饰的函数,然后把它返回,或者将其替换成另一个函数或可调用对象。行为良好的装饰器可以重用,以减少代码量。

原文出处

0人推荐
随时随地看视频
慕课网APP