有些头部电商的数据规模达到一定程度之后,比如淘宝或者美团的日订单量可能有几千万。在这样数据规模下,数据库面临很大的压力。通常,当数据库达到一定规模后需要对数据进行切分,对数据库或者表进行切分,有的需要纵向切分,有的需要横向切分。伴随着库表切分之后,对于数据库的查询就增加很大的难度,比如我们常会遇到分页查询。通常我们把分表使用的字段称作shardingkey,比如订单表按照用户ID,那么如果查询条件中不带用户ID查询怎么做分页?
一、唯一主键
一般我们数据库的主键都是自增的,那么分表之后主键冲突的问题就是一个无法避免的问题,最简单的办法就是以一个唯一的业务字段作为唯一的主键,比如订单表的订单号肯定是全局唯一的。
常见的分布式生成唯一ID的方式很多,最常见的雪花算法Snowflake、滴滴Tinyid、美团Leaf。以雪花算法举例来说,一毫秒可以生成4194304多个ID。
第一位不使用,默认都是0,41位时间戳精确到毫秒,可以容纳69年的时间,10位工作机器ID高5位是数据中心ID,低5位是节点ID,12位序列号每个节点每毫秒累加,累计可以达到2^12 4096个ID。
二、分表
第一步,分表后要怎么保证订单号的唯一搞定了,现在考虑下分表的问题。首先根据自身的业务量和增量来考虑分表的大小。
举个例子,现在我们日单量是10万单,预估一年后可以达到日100万单,根据业务属性,一般我们就支持查询半年内的订单,超过半年的订单需要做归档处理。
那么以日订单100万半年的数量级来看,不分表的话我们订单量将达到100万X180=1.8亿,以这个数据量级部分表的话肯定单表是扛不住的,就算你能扛RT的时间你也根本无法接受吧。根据经验单表几百万的数量对于数据库是没什么压力的,那么只要分256张表就足够了,1.8亿/256≈70万,如果为了保险起见,也可以分到512张表。那么考虑一下,如果业务量再增长10倍达到1000万单每天,分表1024就是比较合适的选择。
通过分表加上超过半年的数据归档之后,单表70万的数据就足以应对大部分场景了。接下来对订单号hash,然后对256取模的就可以落到具体的哪张表了。
那么,因为唯一主键都是以订单号作为依据,以前你写的那些根据主键ID做查询的就不能用了,这就涉及到了历史一些查询功能的修改。不过这都不是事儿对吧,都改成以订单号来查就行了。这都不是问题,问题在我们的标题说的点上。
三、C端查询
说了半天,总算到了正题了,那么分表之后查询和分页查询的问题怎么解决
首先说带shardingkey的查询,比如就通过订单号查询,不管你分页还是怎么样都是能直接定位到具体的表来查询的,显然查询是不会有什么问题的。
如果不是shardingkey的话,上面举例说的以订单号作为shardingkey的话,像APP、小程序这种一般都是通过用户ID查询,那这时候我们通过订单号做的sharding怎么办?很多公司订单表直接用用户ID做shardingkey,那么很简单,直接查就完了。那么订单号怎么办,一个很简单的办法就是在订单号上带上用户ID的属性。举个很简单的例子,原本41位的时间戳你觉得用不完,用户ID是10位的,订单号的生成规则带上用户ID,落具体表的时候根据订单号中10位用户ID hash取模,这样无论根据订单号还是用户ID查询效果都是一样的。
当然,这种方式只是举例,具体的订单号生成的规则,多少位,包含哪些因素根据自己的业务和实现机制来决定。
那么无论你是订单号还是用户ID作为shardingkey,按照以上的两种方式都可以解决问题了。那么还有一个问题就是如果既不是订单号又不是用户ID询怎么办?最直观的例子就是来自商户端或者后台的查询,商户端都是以商户或者说卖家的ID作为查询条件来查的,后台的查询条件可能就更复杂了,像我碰到的有些后台查询条件能有几十个,这怎么查???别急,接下来分开说B端和后台的复杂查询。
现实中真正的流量大头都是来自于用户端C端,所以本质上解决了用户端的问题,这个问题就解了大半,剩下来自商户卖家端B端、后台支持运营业务的查询流量并不会很大,这个问题就好解。
四、其他端查询
针对B端的非shardingkey的查询有两个办法解决。
双写,双写就是下单的数据落两份,C端和B端的各自保存一份,C端用你可以用单号、用户ID做shardingkey都行,B端就用商家卖家的ID作为shardingkey就好了。有些同学会说了,你双写不影响性能吗?因为对于B端来说轻微的延迟是可以接受的,所以可以采取异步的方式去落B端订单。你想想你去淘宝买个东西下单了,卖家稍微延迟个一两秒收到这个订单的消息有什么关系吗?你点个外卖商户晚一两秒收到这个订单有什么太大影响吗?
这是一个解决方案,另外一个方案就是走离线数仓或者ES查询,订单数据落库之后,不管你通过binlog还是MQ消息的都形式,把数据同步到数仓或者ES,他们支持的数量级对于这种查询条件来说就很简单了。同样这种方式肯定是稍微有延迟的,但是这种可控范围的延迟是可以接受的。
而针对管理后台的查询,比如运营、业务、产品需要看数据,他们天然需要复杂的查询条件,同样走ES或者数仓都可以做得到。如果不用这个方案,又要不带shardingkey的分页查询,兄弟,这就只能扫全表查询聚合数据,然后手动做分页了,但是这样查出来的结果是有限制的。比如你256个片,查询的时候循环扫描所有的分片,每个片取20条数据,最后聚合数据手工分页,那必然是不可能查到全量的数据的。
五、总结
分库分表后的查询问题,对于有经验的同学来说其实这个问题都知道,但是我相信其实大部分同学做的业务可能都没来到这个数量级,分库分表可能都停留在概念阶段,面试被问到后就手足无措了,因为没有经验不知道怎么办。
分库分表首先是基于现有的业务量和未来的增量做出判断,比如拼多多这种日单量5000万的,半年数据得有百亿级别了,那都得分到4096张表了对吧,但是实际的操作是一样的,对于你们的业务分4096那就没有必要了,根据业务做出合理的选择。
对于基于shardingkey的查询我们可以很简单的解决,对于非shardingkey的查询可以通过落双份数据和数仓、ES的方案来解决,当然,如果分表后数据量很小的话,建好索引,扫全表查询其实也不是什么问题。
热门评论