手记

Pytorch实现简单卷积神经网络

Pytorch实现简单的AlexNet:

import torch 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 


class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(1,6,3) #[1,6,3,3]
        self.conv2 = nn.Conv2d(6,16,3)
        self.fc1   = nn.Linear(16*28*28,512) #卷积的时候:32->30->28
        self.fc2   = nn.Linear(512,64)
        self.fc3   = nn.Linear(64,2)

    def forward(self,x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = x.view(-1,16*28*28)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)
        
        return x 

#查看神经网络结构
net = Net()
print(net)

input_data = torch.randn(1,1,32,32)

#运行神经网络
out = net(input_data)
print(out)

#随机生成真实值
target = torch.randn(2)
target = target.view(1,-1)


#计算预测值与真实值的误差,基于L1
criterion = nn.L1Loss()
loss = criterion(out,target)
print(loss)

#误差反向传递
net.zero_grad() #先清零梯度
loss.backward() #反向传递,自动计算梯度

#权重更新
optimizer = optim.SGD(net.parameters(),lr = 0.01)
optimizer.step()

运行结果

Pytorch实现卷积神经网络图像分类器:

Demo1:加载并显示数据:

import torch 
import torchvision
import torchvision.transforms as transforms 


transform01 = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))         
    ]
)

#训练数据集
trainset = torchvision.datasets.CIFAR10(root = './data',train = True,download = True,transform = transform01)
trainloader = torch.utils.data.DataLoader(trainset,batch_size = 4,shuffle = True,num_workers = 2)

#测试数据集
testset = torchvision.datasets.CIFAR10(root = './data',train = False,download = True,transform = transform01)
testloader = torch.utils.data.DataLoader(testset,batch_size = 4,shuffle = False,num_workers = 2)

#显示图片
import matplotlib.pyplot as plt 
import numpy as np 


def imshow(img):
    #torch.tensor[c,h,w]
    img = img / 2 + 0.5
    npimg = img.numpy()
    npimg = np.transpose(npimg,(1,2,0)) #[c,h,w] --> [h,w,c]
    plt.imshow(npimg)
    plt.show()


if __name__ == '__main__':
    torch.multiprocessing.set_start_method('spawn')
    #随机加载一个mini batch
    dataIter = iter(trainloader)
    images,labels = dataIter.next()
    imshow(torchvision.utils.make_grid(images))

运行结果:

Demo2:训练代码

import torch 
import torchvision
import torchvision.transforms as transforms 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 


transform01 = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))         
    ]
)

#训练数据集
trainset = torchvision.datasets.CIFAR10(root = './data',train = True,download = True,transform = transform01)
trainloader = torch.utils.data.DataLoader(trainset,batch_size = 4,shuffle = True,num_workers = 2)

#测试数据集
testset = torchvision.datasets.CIFAR10(root = './data',train = False,download = True,transform = transform01)
testloader = torch.utils.data.DataLoader(testset,batch_size = 4,shuffle = False,num_workers = 2)


class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(3,6,3)
        self.conv2 = nn.Conv2d(6,16,3)
        self.fc1   = nn.Linear(16*28*28,512)
        self.fc2   = nn.Linear(512,64)
        self.fc3   = nn.Linear(64,10)
    def forward(self,x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = x.view(-1,16*28*28)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)

        return x 


net = Net()

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)

if __name__ == '__main__':
    torch.multiprocessing.set_start_method('spawn')
    for epoch in range(5):
        for i,data in enumerate(trainloader):
            images,labels = data 
            outputs = net(images)

            loss = criterion(outputs,labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if (i % 1200 == 0):
                print('Epoch : %d,Step: %d,Loss: %.3f' %(epoch,i,loss.item()))



运行结果:

Demo3:测试准确率

import torch 
import torchvision
import torchvision.transforms as transforms 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 


transform01 = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))         
    ]
)

#训练数据集
trainset = torchvision.datasets.CIFAR10(root = './data',train = True,download = True,transform = transform01)
trainloader = torch.utils.data.DataLoader(trainset,batch_size = 4,shuffle = True,num_workers = 2)

#测试数据集
testset = torchvision.datasets.CIFAR10(root = './data',train = False,download = True,transform = transform01)
testloader = torch.utils.data.DataLoader(testset,batch_size = 4,shuffle = False,num_workers = 2)


class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(3,6,3)
        self.conv2 = nn.Conv2d(6,16,3)
        self.fc1   = nn.Linear(16*28*28,512)
        self.fc2   = nn.Linear(512,64)
        self.fc3   = nn.Linear(64,10)
    def forward(self,x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = x.view(-1,16*28*28)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)

        return x 


net = Net()

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)

if __name__ == '__main__':
    torch.multiprocessing.set_start_method('spawn')

    #测试模型
    correct = 0.0 
    total   = 0.0 

    with torch.no_grad():
        for data in testloader:
            images,labels = data 
            outputs = net(images)
            _,predicted = torch.max(outputs.data,1)
            correct += (predicted == labels).sum()
            total += labels.size(0)

    print('准确率',float(correct)/total)

运行结果:

比较低了。。

完整代码:

import torch 
import torchvision
import torchvision.transforms as transforms 
import torch.nn as nn 
import torch.nn.functional as F 
import torch.optim as optim 


transform01 = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))         
    ]
)

#训练数据集
trainset = torchvision.datasets.CIFAR10(root = './data',train = True,download = True,transform = transform01)
trainloader = torch.utils.data.DataLoader(trainset,batch_size = 4,shuffle = True,num_workers = 2)

#测试数据集
testset = torchvision.datasets.CIFAR10(root = './data',train = False,download = True,transform = transform01)
testloader = torch.utils.data.DataLoader(testset,batch_size = 4,shuffle = False,num_workers = 2)


class Net(nn.Module):
    def __init__(self):
        super(Net,self).__init__()
        self.conv1 = nn.Conv2d(3,6,3)
        self.conv2 = nn.Conv2d(6,16,3)
        self.fc1   = nn.Linear(16*28*28,512)
        self.fc2   = nn.Linear(512,64)
        self.fc3   = nn.Linear(64,10)
    def forward(self,x):
        x = self.conv1(x)
        x = F.relu(x)
        x = self.conv2(x)
        x = F.relu(x)
        x = x.view(-1,16*28*28)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.relu(x)
        x = self.fc3(x)

        return x 


net = Net()

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr = 0.001,momentum = 0.9)

if __name__ == '__main__':
    #训练模型
    for epoch in range(5):
        for i,data in enumerate(trainloader):
            images,labels = data 
            outputs = net(images)

            loss = criterion(outputs,labels)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if (i % 2400 == 0):
                print('Epoch : %d,Step: %d,Loss: %.3f' %(epoch,i,loss.item()))

    #保存模型
    torch.save(net.state_dict(),'./model.pt')
    #读取模型
    net_2 = Net()
    net_2.load_state_dict(torch.load('./model.pt'))
    #测试准确率
    correct = 0.0 
    total   = 0.0 
    with torch.no_grad():
        for data in testloader:
            images,labels = data 
            outputs = net_2(images)
            _,predicted = torch.max(outputs.data,1)
            correct += (predicted == labels).sum()
            total += labels.size(0)

    print('准确率',float(correct)/total)

运行结果:

0人推荐
随时随地看视频
慕课网APP