很多数据开发者使用bitmap技术对用户数据进行编码和压缩,然后利用bitmap的与/或/非的极速处理速度,实现类似用户画像标签的人群筛选、运营分析的7日活跃等分析。
本文给出了一个使用MaxCompute MapReduce开发一个对不同日期活跃用户ID进行bitmap编码和计算的样例。供感兴趣的用户进一步了解、分析,并应用在自己的场景下。
import com.aliyun.odps.OdpsException;import com.aliyun.odps.data.Record;import com.aliyun.odps.data.TableInfo;import com.aliyun.odps.mapred.JobClient;import com.aliyun.odps.mapred.MapperBase;import com.aliyun.odps.mapred.ReducerBase;import com.aliyun.odps.mapred.conf.JobConf;import com.aliyun.odps.mapred.utils.InputUtils;import com.aliyun.odps.mapred.utils.OutputUtils;import com.aliyun.odps.mapred.utils.SchemaUtils;import org.roaringbitmap.RoaringBitmap;import org.roaringbitmap.buffer.ImmutableRoaringBitmap;import java.io.DataOutputStream;import java.io.IOException;import java.io.OutputStream;import java.nio.ByteBuffer;import java.util.Base64;import java.util.Iterator;public class bitmapDemo2{ public static class BitMapper extends MapperBase { Record key; Record value; @Override public void setup(TaskContext context) throws IOException { key = context.createMapOutputKeyRecord(); value = context.createMapOutputValueRecord(); } @Override public void map(long recordNum, Record record, TaskContext context) throws IOException { RoaringBitmap mrb=new RoaringBitmap(); long AID=0; { { { { AID=record.getBigint("id"); mrb.add((int) AID); //获取key key.set(new Object[] {record.getString("active_date")}); } } } } ByteBuffer outbb = ByteBuffer.allocate(mrb.serializedSizeInBytes()); mrb.serialize(new DataOutputStream(new OutputStream(){ ByteBuffer mBB; OutputStream init(ByteBuffer mbb) {mBB=mbb; return this;} public void close() {} public void flush() {} public void write(int b) { mBB.put((byte) b);} public void write(byte[] b) {mBB.put(b);} public void write(byte[] b, int off, int l) {mBB.put(b,off,l);} }.init(outbb))); String serializedstring = Base64.getEncoder().encodeToString(outbb.array()); value.set(new Object[] {serializedstring}); context.write(key, value); } } public static class BitReducer extends ReducerBase { private Record result = null; public void setup(TaskContext context) throws IOException { result = context.createOutputRecord(); } public void reduce(Record key, Iterator<Record> values, TaskContext context) throws IOException { long fcount = 0; RoaringBitmap rbm=new RoaringBitmap(); while (values.hasNext()) { Record val = values.next(); ByteBuffer newbb = ByteBuffer.wrap(Base64.getDecoder().decode((String)val.get(0))); ImmutableRoaringBitmap irb = new ImmutableRoaringBitmap(newbb); RoaringBitmap p= new RoaringBitmap(irb); rbm.or(p); } ByteBuffer outbb = ByteBuffer.allocate(rbm.serializedSizeInBytes()); rbm.serialize(new DataOutputStream(new OutputStream(){ ByteBuffer mBB; OutputStream init(ByteBuffer mbb) {mBB=mbb; return this;} public void close() {} public void flush() {} public void write(int b) { mBB.put((byte) b);} public void write(byte[] b) {mBB.put(b);} public void write(byte[] b, int off, int l) {mBB.put(b,off,l);} }.init(outbb))); String serializedstring = Base64.getEncoder().encodeToString(outbb.array()); result.set(0, key.get(0)); result.set(1, serializedstring); context.write(result); } } public static void main( String[] args ) throws OdpsException { System.out.println("begin........."); JobConf job = new JobConf(); job.setMapperClass(BitMapper.class); job.setReducerClass(BitReducer.class); job.setMapOutputKeySchema(SchemaUtils.fromString("active_date:string")); job.setMapOutputValueSchema(SchemaUtils.fromString("id:string")); InputUtils.addTable(TableInfo.builder().tableName("bitmap_source").cols(new String[] {"id","active_date"}).build(), job);// +------------+-------------+// | id | active_date |// +------------+-------------+// | 1 | 20190729 |// | 2 | 20190729 |// | 3 | 20190730 |// | 4 | 20190801 |// | 5 | 20190801 |// +------------+-------------+ OutputUtils.addTable(TableInfo.builder().tableName("bitmap_target").build(), job);// +-------------+------------+// | active_date | bit_map |// +-------------+------------+// 20190729,OjAAAAEAAAAAAAEAEAAAAAEAAgA=3D// 20190730,OjAAAAEAAAAAAAAAEAAAAAMA// 20190801,OjAAAAEAAAAAAAEAEAAAAAQABQA=3D JobClient.runJob(job); } }
对Java应用打包后,上传到MaxCompute项目中,即可在MaxCompute中调用该MR作业,对输入表的数据按日期作为key进行用户id的编码,同时按照相同日期对bitmap后的用户id取OR操作(根据需要可以取AND,例如存留场景),并将处理后的数据写入目标结构表当中供后续处理使用。