很多数据开发者使用bitmap技术对用户数据进行编码和压缩,然后利用bitmap的与/或/非的极速处理速度,实现类似用户画像标签的人群筛选、运营分析的7日活跃等分析。
本文给出了一个使用MaxCompute MapReduce开发一个对不同日期活跃用户ID进行bitmap编码和计算的样例。供感兴趣的用户进一步了解、分析,并应用在自己的场景下。
import com.aliyun.odps.OdpsException;import com.aliyun.odps.data.Record;import com.aliyun.odps.data.TableInfo;import com.aliyun.odps.mapred.JobClient;import com.aliyun.odps.mapred.MapperBase;import com.aliyun.odps.mapred.ReducerBase;import com.aliyun.odps.mapred.conf.JobConf;import com.aliyun.odps.mapred.utils.InputUtils;import com.aliyun.odps.mapred.utils.OutputUtils;import com.aliyun.odps.mapred.utils.SchemaUtils;import org.roaringbitmap.RoaringBitmap;import org.roaringbitmap.buffer.ImmutableRoaringBitmap;import java.io.DataOutputStream;import java.io.IOException;import java.io.OutputStream;import java.nio.ByteBuffer;import java.util.Base64;import java.util.Iterator;public class bitmapDemo2{ public static class BitMapper extends MapperBase {
Record key;
Record value; @Override
public void setup(TaskContext context) throws IOException {
key = context.createMapOutputKeyRecord();
value = context.createMapOutputValueRecord();
} @Override
public void map(long recordNum, Record record, TaskContext context)
throws IOException {
RoaringBitmap mrb=new RoaringBitmap(); long AID=0;
{
{
{
{
AID=record.getBigint("id");
mrb.add((int) AID); //获取key
key.set(new Object[] {record.getString("active_date")});
}
}
}
}
ByteBuffer outbb = ByteBuffer.allocate(mrb.serializedSizeInBytes());
mrb.serialize(new DataOutputStream(new OutputStream(){
ByteBuffer mBB; OutputStream init(ByteBuffer mbb) {mBB=mbb; return this;} public void close() {} public void flush() {} public void write(int b) {
mBB.put((byte) b);} public void write(byte[] b) {mBB.put(b);} public void write(byte[] b, int off, int l) {mBB.put(b,off,l);}
}.init(outbb)));
String serializedstring = Base64.getEncoder().encodeToString(outbb.array());
value.set(new Object[] {serializedstring});
context.write(key, value);
}
} public static class BitReducer extends ReducerBase { private Record result = null; public void setup(TaskContext context) throws IOException {
result = context.createOutputRecord();
} public void reduce(Record key, Iterator<Record> values, TaskContext context) throws IOException { long fcount = 0;
RoaringBitmap rbm=new RoaringBitmap(); while (values.hasNext())
{
Record val = values.next();
ByteBuffer newbb = ByteBuffer.wrap(Base64.getDecoder().decode((String)val.get(0)));
ImmutableRoaringBitmap irb = new ImmutableRoaringBitmap(newbb);
RoaringBitmap p= new RoaringBitmap(irb);
rbm.or(p);
}
ByteBuffer outbb = ByteBuffer.allocate(rbm.serializedSizeInBytes());
rbm.serialize(new DataOutputStream(new OutputStream(){
ByteBuffer mBB; OutputStream init(ByteBuffer mbb) {mBB=mbb; return this;} public void close() {} public void flush() {} public void write(int b) {
mBB.put((byte) b);} public void write(byte[] b) {mBB.put(b);} public void write(byte[] b, int off, int l) {mBB.put(b,off,l);}
}.init(outbb)));
String serializedstring = Base64.getEncoder().encodeToString(outbb.array());
result.set(0, key.get(0));
result.set(1, serializedstring);
context.write(result);
}
} public static void main( String[] args ) throws OdpsException {
System.out.println("begin.........");
JobConf job = new JobConf();
job.setMapperClass(BitMapper.class);
job.setReducerClass(BitReducer.class);
job.setMapOutputKeySchema(SchemaUtils.fromString("active_date:string"));
job.setMapOutputValueSchema(SchemaUtils.fromString("id:string"));
InputUtils.addTable(TableInfo.builder().tableName("bitmap_source").cols(new String[] {"id","active_date"}).build(), job);// +------------+-------------+// | id | active_date |// +------------+-------------+// | 1 | 20190729 |// | 2 | 20190729 |// | 3 | 20190730 |// | 4 | 20190801 |// | 5 | 20190801 |// +------------+-------------+
OutputUtils.addTable(TableInfo.builder().tableName("bitmap_target").build(), job);// +-------------+------------+// | active_date | bit_map |// +-------------+------------+// 20190729,OjAAAAEAAAAAAAEAEAAAAAEAAgA=3D// 20190730,OjAAAAEAAAAAAAAAEAAAAAMA// 20190801,OjAAAAEAAAAAAAEAEAAAAAQABQA=3D
JobClient.runJob(job);
}
}对Java应用打包后,上传到MaxCompute项目中,即可在MaxCompute中调用该MR作业,对输入表的数据按日期作为key进行用户id的编码,同时按照相同日期对bitmap后的用户id取OR操作(根据需要可以取AND,例如存留场景),并将处理后的数据写入目标结构表当中供后续处理使用。