手记

月薪3k的后端面试点-Redis

Memcache和Redis的区别

  • Memcache:代码层次类似Hash
    • 支持简单数据类型
    • 不支持数据持久化存储
    • 不支持主从
    • 不支持分片
  • Redis
    • 数据类型丰富
    • 支持数据磁盘持久化存储
    • 支持主从
    • 支持分片

FD:File Descriptor,文件描述符:一个打开的文件通过唯一的描述符进行引用,该描述符是打开文件的元数据到文件本身的映射

  • Redis采用的IVO多路复用函数:epoll/kqueue/evport/select
  • 优先选择时间复杂度为O(1)的I/O多路复用函数作为底层实现
  • 以时间复杂度为O(n)的select作为保底
  • 基于react设计模式监听I/O事件
  • Redis是基于内存的操作,CPU不是Redis的瓶颈,Redis的瓶颈最有可能是机器内存的大小或者网络带宽。既然单线程容易实现,而且CPU不会成为瓶颈
  • Redis使用的是非阻塞IO,IO多路复用,使用了单线程来轮询描述符,将数据库的开、关、读、写都转换成了事件,减少了线程切换时上下文的切换和竞争

  • String:最基本的数据类型,二进制安全
  • Hash:String元素组成的字典,适合用于存储对象
  • List:列表,按照String元素插入顺序排序
  • Set:String元素组成的无序集合,通过哈希表实现,不允许重复
  • Sorted Set:通过分数来为集合中的成员进行从小到大的排序
  • 用于计数的HyperLogLog,用于支持存储地理位置信息的Geo

从海量Key里查询出某一固定前缀的Key

  • KEYS pattern:查找所有符合给定模式pattern的key
  • SCAN cursor [MATCH pattern] [COUNT count]
    • 基于游标的迭代器,需要基于上一次的游标延续之前的迭代过程
    • 以O作为游标开始一次新的迭代,直到命令返回游标0完成一次遍历
    • 不保证每次执行都返回某个给定数量的元素,支持模糊查询
    • 一次返回的数量不可控,只能是大概率符合count参数

如何通过Redis实现分布式锁

  • 分布式锁需要解决的问题
    • 互斥性
    • 安全性
    • 死锁
    • 容错

SETNX key value:如果key不存在,则创建并赋值

  • 时间复杂度:O(1)
  • 返回值:设置成功,返回1;设置失败,返回0。
  • EXPIRE key seconds
    • 设置key的生存时间,当key过期时(生存时间为0),会被自动删除
  • SET key value [EX seconds][PX milliseconds][NXIXX]
    • EX second:设置键的过期时间为second秒
    • PXmillisecond:设置键的过期时间为millisecond 毫秒
    • NX:只在键不存在时,才对键进行设置操作
    • XX:只在键已经存在时,才对键进行设置操作
    • SET操作成功完成时,返回OK,否则返回nil

  • 大量的key同时过期的注意事项
    • 集中过期,由于清除大量的key很耗时,会出现短暂的卡顿现象
    • 解放方案:在设置key的过期时间的时候,给每个key加上随机值

异步队列

  • 使用List作为队列,RPUSH生产消息,LPOP消费消息
    • 缺点:没有等待队列里有值就直接消费
    • 弥补:可以通过在应用层引入Sleep机制去调用LPOP重试
  • BLPOP key [key…] timeout:阻塞直到队列有消息或者超时
  • 缺点:只能供一个消费者消费
  • pub/sub:主题订阅者模式
    • 发送者(pub)发送消息,订阅者(sub)接收消息
    • 订阅者可以订阅任意数量的频道
    • 缺点:消息的发布是无状态的,无法保证可达

持久化

RDB(快照)持久化:保存某个时间点的全量数据快照

  • SAVE:阻塞Redis的服务器进程,直到RDB文件被创建完毕
  • BGSAVE:Fork出一个子进程来创建RDB文件,不阻塞服务器进程
  • 通过lastsave 查看是否保存工程
  • 自动化触发RDB持久化的方式
  • 根据redis.conf配置里的SAVEmn定时触发(用的是BGSAVE)
  • 主从复制时,主节点自动触发
  • 执行Debug Reload
  • 执行Shutdown且没有开启AOF持久化

Bgsave

  • 系统调用fork0:创建进程,实现了Copy-on-Write
  • 如果有多个调用者同时要求相同资源(如内存或磁盘上的数据存储),他们会共同获取相同的指针指向相同的资源,直到某个调用者试图修改资源的内容时,系统才会真正复制一份专用副本给该调用者,而其他调用者所见到的最初的资源仍然保持不变
  • 缺点
    • 内存数据的全量同步,数据量大会由于I/O而严重影响性能
    • 可能会因为Redis挂掉而丢失从当前至最近一次快照期间的数据

AOF

AOF(Append-Only-File)持久化:保存写状态

  • 记录下除了查询以外的所有变更数据库状态的指令
  • 以append的形式追加保存到AOF文件中(增量)

  • 日志重写解决AOF文件大小不断增大的问题,原理如下:
    • 调用fork),创建一个子进程
    • 子进程把新的AOF写到一个临时文件里,不依赖原来的AOF文件
    • 主进程持续将新的变动同时写到内存和原来的AOF里
    • 主进程获取子进程重写AOF的完成信号,往新AOF同步增量变动
    • 使用新的AOF文件替换掉旧的AOF文件
  • RDB和AOF的优缺点
    • RDB优点:全量数据快照,文件小,恢复快
    • RDB缺点:无法保存最近一次快照之后的数据
    • AOF优点:可读性高,适合保存增量数据,数据不易丢失
    • AOF缺点:文件体积大,恢复时间长
  • RDB-AOF混合持久化方式
    • BGSAVE做镜像全量持久化,AOF做增量持久化

Pipe

Pipeline和Linux的管道类似
Redis基于请求/响应模型,单个请求处理需要一一应答
Pipeline批量执行指令,节省多次I0往返的时间
有顺序依赖的指令建议分批发送
主从同步
全同步过程

  • Salve发送sync命令到Master
  • Master启动一个后台进程,将Redis中的数据快照保存到文件中
  • Master将保存数据快照期间接收到的写命令缓存起来
  • Master完成写文件操作后,将该文件发送给Salve
  • 使用新的AOF文件替换掉旧的AOF文件
  • Master将这期间收集的增量写命令发送给Salve端
    增量同步过程
  • Master接收到用户的操作指令,判断是否需要传播到Slave
  • 将操作记录追加到AOF文件
  • 将操作传播到其他Slave:1、对齐主从库;2、往响应缓存写入指令
  • 将缓存中的数据发送给Slave

Redis Sentinel
解决主从同步Master宕机后的主从切换问题:

  • 监控:检查主从服务器是否运行正常
  • 提醒:通过API向管理员或者其他应用程序发送故障通知
  • 自动故障迁移:主从切换

流言协议Gossip

  • 每个节点都随机地与对方通信,最终所有节点的状态达成一致
  • 种子节点定期随机向其他节点发送节点列表以及需要传播的消息
  • 不保证信息一定会传递给所有节点,但是最终会趋于一致

Redis的集群原理

  • 如何从海量数据里快速找到所需?
  • 分片:按照某种规则去划分数据,分散存储在多个节点上
  • 常规的按照哈希划分无法实现节点的动态增减
  • 一致性哈希算法:对2^32取模,将哈希值空间组织成虚拟的圆环
  • 将数据key使用相同的函数Hash计算出哈希值
  • 引入虚拟节点解决数据倾斜的问题
0人推荐
随时随地看视频
慕课网APP