手记

决策树算法的Python实例

1.部分代码实现

import numpy as np 
from sklearn import datasets
from math import log 
from collections import Counter

iris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target

from sklearn.tree import DecisionTreeClassifier
# criterion = "entropy" : 基于信息熵的方式
dt_clf = DecisionTreeClassifier(max_depth = 2,criterion = "entropy")
dt_clf.fit(X,y)

#模拟使用信息熵进行划分
#d:维度,value:阈值

#获得划分用的d(维度)和value(阈值)
def try_split(X,y):
	#方法:通过多次尝试,使信息熵结果最低
	best_entropy = float('inf')  #用正无穷的值初始化best_entropy
	best_d = -1
	best_v = -1
	#X的维度数:X.shape[1]
	#阈值:d划分后的中间值,所以需要先对X的每一列的值进行排序
	for d in range(X.shape[1]):      #列扫描
		sorted_index = np.argsort(X[:,d])
		for i in range(1,len(X)):    #行扫描
			#防止相邻的两个数相等
			if X[sorted_index[i - 1],d] != X[sorted_index[i],d]:
			    v = (X[sorted_index[i - 1],d] + X[sorted_index[i],d]) / 2 
			    X_left,X_right,y_left,y_right = split(X,y,d,v)
			    #划分完可以求熵了!!!
			    e  = entropy(y_left) + entropy(y_right) #划分得到的信息熵
			    if e < best_entropy :
			    	#小于则更新熵和划分方式(d,value)
			    	best_entropy,best_d,best_v = e,d,v
	return best_entropy,best_d,best_v
    

#划分X
def split(X,y,d,value):
	# X[:,d]  <= value  : 布尔类型
	# index_a ,index_b :代表的是索引
	index_a = (X[:,d]  <= value) 
	#获得小于阈值的索引
	index_b = (X[:,d]  > value)
	#获得大于阈值的索引

	return X[index_a],X[index_b],y[index_a],y[index_b]

#计算熵
def entropy(y):
	#计算y的各类别所占的比例
	counter = Counter(y)  #字典类型,collections
	res = 0.0 
	for num in counter.values():
		p = num / len(y)
		res += -p * log(p)  #信息熵
	return res 


#开始用函数逐步划分:
def tree():
	print ("\n *****第一步划分****** \n")
	entropy1,d1,v1 = try_split(X,y)
	print ("entropy1 = ",entropy1)
	print ("d1 = ",d1)
	print ("v1 = ",v1)
	x1_l,x1_r,y1_l,y1_r = split(X,y,d1,v1) #存储划分结果
    
	print ("\n *****第二步划分****** \n")
	entropy2,d2,v2 = try_split(x1_r,y1_r)
	print ("entropy2 = ",entropy2)
	print ("d2 = ",d2)
	print ("v2 = ",v2)
	x2_l,x2_r,y2_l,y2_r = split(x1_r,y1_r,d2,v2) #存储划分结果
    

	print ("\n *****第三步划分****** \n")
	entropy3,d3,v3 = try_split(x2_r,y2_r)
	print ("entropy3 = ",entropy3)
	print ("d3 = ",d3)
	print ("v3 = ",v3)
	#如此循环
	#本函数只沿着右边的维度划分

tree()

运行结果


2.完整代码实现

from math import log
import time
import pandas as pd 
import numpy as np 

def createDataSet():
    dataSet =[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no'],]
    labels =['Tree','leaves']
    return dataSet,labels

#计算香农熵
def calcShannonEnt(dataSet):
    numEntries =len(dataSet)
    labelCounts={}
    for feaVec in dataSet:
        currentLabel =feaVec[-1]
        if currentLabel not in labelCounts:
            labelCounts[currentLabel]=0
        labelCounts[currentLabel]+=1
    shannonEnt =0.0
    for key in labelCounts:
        prob =float(labelCounts[key])/numEntries
        shannonEnt-=prob*log(prob,2)
    return shannonEnt

#去掉已经决策过的属性
def splitDataSet(dataSet,axis,value):
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis]==value:
            reducedFeatVec =featVec[:axis]
            reducedFeatVec.extend(featVec[axis+1:])
            retDataSet.append(reducedFeatVec)
    return retDataSet

#根据信息增益算法,选取最优属性
def chooseBestFeatureToSplit(dataSet):
    numFeatures = len(dataSet[0])-1 #因为数据集的最后一项是标签
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain =0.0
    bestFeature = -1
    for i in range(numFeatures):
        featList =[example[i] for example in dataSet]
        print(featList)
        uniqueVals =set(featList)
        newEntropy = 0.0
        for value in uniqueVals:
            subDataSet =splitDataSet(dataSet,i,value)
            prob = len(subDataSet)/float(len(dataSet))
            newEntropy +=prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy -newEntropy
        if infoGain >bestInfoGain:
            bestInfoGain =infoGain
            bestFeature =i
    return bestFeature
#因为我们递归构建决策树是根据属性的消耗进行计算的,所以可能会存在最后属性用完了,但是分类还没有算完,
#这时候就会采用多数表决的方式计算节点分类
def majorityCnt(classList):
    classCount ={}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] =0
        classCount[vote]+=1
    return max(classCount)

def createTree(dataSet,labels):
    classList =[example[-1] for example in dataSet]
    if classList.count(classList[0]) ==len(classList): #类别相同则停止划分
        return classList[0]
    if len(dataSet[0])==1:#所有特征已经用完
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)
    bestFeatLabel =labels[bestFeat]
    myTree ={bestFeatLabel:{}}
    del(labels[bestFeat])
    featValues = [example[bestFeat] for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]#为了不改变原始列表的内容复制了一下
        myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet,bestFeat, value),subLabels)
    return myTree
     
def main():
    data,label =createDataSet()
    t1 =time.clock()
    myTree =createTree(data,label)
    t2 =time.clock()
    print(myTree)
    print('execure time:',t2-t1)


if __name__=='__main__':
    main()

运行结果

参考教程

1人推荐
随时随地看视频
慕课网APP