手记

Java常见排序算法——堆排序

概念

二叉树

要了解堆首先得了解一下二叉树,在计算机科学中,二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)。二叉树常被用于实现二叉查找树和二叉堆。
二叉树的每个结点至多只有二棵子树(不存在度大于 2 的结点),二叉树的子树有左右之分,次序不能颠倒。二叉树的第 i 层至多有 2i - 1 个结点;深度为 k 的二叉树至多有 2k - 1 个结点;对任何一棵二叉树 T,如果其终端结点数为 n0,度为 2 的结点数为 n2,则n0 = n2 + 1。

树和二叉树的三个主要差别:

树的结点个数至少为 1,而二叉树的结点个数可以为 0
树中结点的最大度数没有限制,而二叉树结点的最大度数为 2
树的结点无左、右之分,而二叉树的结点有左、右之分
二叉树又分为完全二叉树(complete binary tree)和满二叉树(full binary tree)
如图:

满二叉树:一棵深度为 k,且有 2k - 1 个节点称之为满二叉树
完全二叉树:深度为 k,有 n 个节点的二叉树,当且仅当其每一个节点都与深度为 k 的满二叉树中序号为 1 至 n 的节点对应时,称之为完全二叉树

堆(二叉堆)可以视为一棵完全的二叉树,完全二叉树的一个“优秀”的性质是,除了最底层之外,每一层都是满的,这使得堆可以利用数组来表示(普通的一般的二叉树通常用链表作为基本容器表示),每一个结点对应数组中的一个元素。

如下图,是一个堆和数组的相互关系

二叉堆一般分为两种:最大堆和最小堆。

最大堆:

最大堆中的最大元素值出现在根结点(堆顶)
堆中每个父节点的元素值都大于等于其孩子结点(如果存在)

最小堆:

最小堆中的最小元素值出现在根结点(堆顶)
堆中每个父节点的元素值都小于等于其孩子结点(如果存在)

原理

  1. 最大堆调整(Max_Heapify):从堆的倒数第一个非叶子节点作调整,使得子节点永远小于父节点。没有必要从叶子节点开始,叶子节点可以看作是已符合堆特点的节点。
  2. 创建最大堆(Build_Max_Heap):将堆所有数据重新排序
  3. 堆排序(HeapSort):移除位在第一个数据的根节点,并做最大堆调整。
    图解:列如我们有原始数字[2 10 9 5 6 1]
    下面我们用堆排序排序
    原始为:
    )
    第一次:

    第二次

    我们得到了

    代码实现:
 /**
     * 堆排序的主要入口方法,共两步。
     */
    public void sort() {
        /*
         *  第一步:将数组堆化
         *  beginIndex = 第一个非叶子节点。
         *  从第一个非叶子节点开始即可。无需从最后一个叶子节点开始。
         *  叶子节点可以看作已符合堆要求的节点,根节点就是它自己且自己以下值为最大。
         */
        int len = array.length - 1;
        int beginIndex = (len - 1) >> 1;
        for (int i = beginIndex; i >= 0; i--)
            maxHeapify(i, len);
        /*
         * 第二步:对堆化数据排序
         * 每次都是移出最顶层的根节点A[0],与最尾部节点位置调换,同时遍历长度 - 1。
         * 然后从新整理被换到根节点的末尾元素,使其符合堆的特性。
         * 直至未排序的堆长度为 0。
         */
        for (int i = len; i > 0; i--) {
            swap(0, i);
            maxHeapify(0, i - 1);
        }
    }

    private void swap(int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

    /**
     * 调整索引为 index 处的数据,使其符合堆的特性。
     *
     * @param index 需要堆化处理的数据的索引
     * @param len 未排序的堆(数组)的长度
     */
    private void maxHeapify(int index, int len) {
        int li = (index << 1) + 1; // 左子节点索引
        int ri = li + 1;           // 右子节点索引
        int cMax = li;             // 子节点值最大索引,默认左子节点。
        if (li > len) return;      // 左子节点索引超出计算范围,直接返回。
        if (ri <= len && array[ri] > array[li]) // 先判断左右子节点,哪个较大。
            cMax = ri;
        if (array[cMax] > array[index]) {  //若“<”这是从大到小
            swap(cMax, index);      // 如果父节点被子节点调换,
            maxHeapify(cMax, len);  // 则需要继续判断换下后的父节点是否符合堆的特性。
        }
    }

算法系列:

完整代码:

Java和Kotlin代码我均放在了GitHub上,欢迎Star!

据说,年轻、颜值高的互联网人都点了赞!
2人推荐
随时随地看视频
慕课网APP