手记

Linux Kernel文件系统写I/O流程代码分析(二)bdi_writeback

Linux Kernel文件系统写I/O流程代码分析(二)bdi_writeback

上一篇# Linux Kernel文件系统写I/O流程代码分析(一),我们看到Buffered IO,写操作写入到page cache后就直接返回了,本文主要分析脏页是如何刷盘的。

概述

由于内核page cache的作用,写操作实际被延迟写入。当page cache里的数据被用户写入但是没有刷新到磁盘时,则该page为脏页(块设备page cache机制因为以前机械磁盘以扇区为单位读写,引入了buffer_head,每个4K的page进一步划分成8个buffer,通过buffer_head管理,因此可能只设置了部分buffer head为脏)。
脏页在以下情况下将被回写(write back)到磁盘上:

  • 脏页在内存里的时间超过了阈值。

  • 系统的内存紧张,低于某个阈值时,必须将所有脏页回写。

  • 用户强制要求刷盘,如调用sync()、fsync()、close()等系统调用。

以前的Linux通过pbflush机制管理脏页的回写,但因为其管理了所有的磁盘的page/buffer_head,存在严重的性能瓶颈,因此从Linux 2.6.32开始,脏页回写的工作由bdi_writeback机制负责。bdi_writeback机制为每个磁盘都创建一个线程,专门负责这个磁盘的page cache或者
buffer cache的数据刷新工作,以提高I/O性能。

BDI系统

BDI是backing device info的缩写,它用于描述后端存储(如磁盘)设备相关的信息。相对于内存来说,后端存储的I/O比较慢,因此写盘操作需要通过page cache进行缓存延迟写入。
最初的BDI子系统里,模块启动的时候创建bdi-default进程,然后为每个注册的设备创建flush-x:y(x,y为主次设备号)的进程,用于脏数据的回写。在Linux 3.10.0版本之后,BDI子系统使用workqueue机制代替原来的线程创建,需要回写时,将flush任务提交给workqueue,最终由通用的[kworker]进程负责处理。BDI子系统初始化的代码如下:

static int __init default_bdi_init(void){    int err;

    bdi_wq = alloc_workqueue("writeback", WQ_MEM_RECLAIM | WQ_FREEZABLE |
                          WQ_UNBOUND | WQ_SYSFS, 0);    if (!bdi_wq)        return -ENOMEM;

    err = bdi_init(&default_backing_dev_info);    if (!err)
        bdi_register(&default_backing_dev_info, NULL, "default");
    err = bdi_init(&noop_backing_dev_info);    return err;
}
subsys_initcall(default_bdi_init);

设备注册

当执行mount流程时,底层文件系统定义自己的struct backing_dev_info结构并将其注册到BDI子系统,如下是FUSE代码示例:

static int fuse_bdi_init(struct fuse_conn *fc, struct super_block *sb)
{
    int err;

    fc->bdi.name = "fuse";
    fc->bdi.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;    /* fuse does it's own writeback accounting */
    fc->bdi.capabilities = BDI_CAP_NO_ACCT_WB | BDI_CAP_STRICTLIMIT;

    err = bdi_init(&fc->bdi);    if (err)        return err;

    fc->bdi_initialized = 1;    if (sb->s_bdev) {
        err =  bdi_register(&fc->bdi, NULL, "%u:%u-fuseblk",
                    MAJOR(fc->dev), MINOR(fc->dev));
    } else {
        err = bdi_register_dev(&fc->bdi, fc->dev);
    }    if (err)        return err;    /*
     *    /sys/class/bdi/<bdi>/max_ratio
     */
    bdi_set_max_ratio(&fc->bdi, 1);    return 0;
}

该函数先通过bdi_init()初始化struct backing_dev_info,然后通过bid_register()将其注册到BDI子系统。
其中bdi_init()会调用bdi_wb_init()初始化struct bdi_writeback

static void bdi_wb_init(struct bdi_writeback *wb, struct backing_dev_info *bdi)
{
    memset(wb, 0, sizeof(*wb));

    wb->bdi = bdi;
    wb->last_old_flush = jiffies;
    INIT_LIST_HEAD(&wb->b_dirty);
    INIT_LIST_HEAD(&wb->b_io);
    INIT_LIST_HEAD(&wb->b_more_io);
    spin_lock_init(&wb->list_lock);
    INIT_DELAYED_WORK(&wb->dwork, bdi_writeback_workfn);
}

其中初始化了一个默认处理函数为bdi_writeback_workfn的work,用于回写处理。

数据回写

在上一篇的基础上,将图补充了bdi回写的部分,如下所示:

bdi_queue_work

BDI子系统使用workqueue机制进行数据回写,其回写接口为bdi_queue_work()将具体某个bdi的回写请求(wb_writeback_work)挂到bdi_wq上。代码如下:

static void bdi_queue_work(struct backing_dev_info *bdi,
               struct wb_writeback_work *work)
{
    trace_writeback_queue(bdi, work);

    spin_lock_bh(&bdi->wb_lock);    if (!test_bit(BDI_registered, &bdi->state)) {        if (work->done)
            complete(work->done);        goto out_unlock;
    }
    list_add_tail(&work->list, &bdi->work_list);
    mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
out_unlock:
    spin_unlock_bh(&bdi->wb_lock);
}

调用该函数的地方包括:

  • sync_inode_sb(): 将该super block上所有的脏inode回写。

  • writeback_inodes_sb_nr():回写super block上指定个数脏inode。

  • **__bdi_start_writeback()**:定时调用或者需要释放pages或者需要更多内存时调用。

bdi_writeback_workfn

bdi_queue_work()提交了work给bdi_wq上,由对应的bdi处理函数进行处理,默认的函数为bdi_writeback_workfn,其代码如下:

void bdi_writeback_workfn(struct work_struct *work)
{
    struct bdi_writeback *wb = container_of(to_delayed_work(work),
                        struct bdi_writeback, dwork);
    struct backing_dev_info *bdi = wb->bdi;
    long pages_written;

    set_worker_desc("flush-%s", dev_name(bdi->dev));
    current->flags |= PF_SWAPWRITE;    if (likely(!current_is_workqueue_rescuer() ||
           !test_bit(BDI_registered, &bdi->state))) {        /*
         * The normal path.  Keep writing back @bdi until its
         * work_list is empty.  Note that this path is also taken
         * if @bdi is shutting down even when we're running off the
         * rescuer as work_list needs to be drained.
         */
        do {
            pages_written = wb_do_writeback(wb);
            trace_writeback_pages_written(pages_written);
        } while (!list_empty(&bdi->work_list));
    } else {        /*
         * bdi_wq can't get enough workers and we're running off
         * the emergency worker.  Don't hog it.  Hopefully, 1024 is
         * enough for efficient IO.
         */
        pages_written = writeback_inodes_wb(&bdi->wb, 1024,
                            WB_REASON_FORKER_THREAD);
        trace_writeback_pages_written(pages_written);
    }    if (!list_empty(&bdi->work_list))
        mod_delayed_work(bdi_wq, &wb->dwork, 0);    else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
        bdi_wakeup_thread_delayed(bdi);

    current->flags &= ~PF_SWAPWRITE;
}

首先判断当前workqueue能否获得足够的worker进行处理,如果能则将bdi上所有work全部提交,否则只提交一个work并限制写入1024个pages。
正常情况下通过调用wb_do_writeback函数处理回写。

wb_do_writeback

该函数代码如下,遍历bdi上所有work,通过调用wb_writeback()进行数据写入。

static long wb_do_writeback(struct bdi_writeback *wb){    struct backing_dev_info *bdi = wb->bdi;
    struct wb_writeback_work *work;
    long wrote = 0;

    set_bit(BDI_writeback_running, &wb->bdi->state);    while ((work = get_next_work_item(bdi)) != NULL) {

        trace_writeback_exec(bdi, work);

        wrote += wb_writeback(wb, work);        /*
         * Notify the caller of completion if this is a synchronous
         * work item, otherwise just free it.
         */
        if (work->done)
            complete(work->done);        else
            kfree(work);
    }    /*
     * Check for periodic writeback, kupdated() style
     */
    wrote += wb_check_old_data_flush(wb);
    wrote += wb_check_background_flush(wb);
    clear_bit(BDI_writeback_running, &wb->bdi->state);    return wrote;
}

wb_writeback()函数最终调用__writeback_single_inode()将某个inode上脏页刷回。

**__writeback_single_inode**

__writeback_single_inode()的代码如下,最终通过调用do_writepages()函数写盘:

static int
__writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
{
    struct address_space *mapping = inode->i_mapping;
    long nr_to_write = wbc->nr_to_write;
    unsigned dirty;
    int ret;

    WARN_ON(!(inode->i_state & I_SYNC));

    trace_writeback_single_inode_start(inode, wbc, nr_to_write);

    ret = do_writepages(mapping, wbc);    /*
     * Make sure to wait on the data before writing out the metadata.
     * This is important for filesystems that modify metadata on data
     * I/O completion. We don't do it for sync(2) writeback because it has a
     * separate, external IO completion path and ->sync_fs for guaranteeing
     * inode metadata is written back correctly.
     */
    if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
        int err = filemap_fdatawait(mapping);        if (ret == 0)
            ret = err;
    }    /*
     * Some filesystems may redirty the inode during the writeback
     * due to delalloc, clear dirty metadata flags right before
     * write_inode()
     */
    spin_lock(&inode->i_lock);    /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
    if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
        inode->i_state &= ~I_DIRTY_PAGES;
    dirty = inode->i_state & I_DIRTY;
    inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
    spin_unlock(&inode->i_lock);    /* Don't write the inode if only I_DIRTY_PAGES was set */
    if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
        int err = write_inode(inode, wbc);        if (ret == 0)
            ret = err;
    }
    trace_writeback_single_inode(inode, wbc, nr_to_write);    return ret;
}

do_writepages

函数do_writepages()在上一篇已经介绍过了,它负责调用底层文件系统的a_ops->writepages将pages写入后端存储。

作者:舰队

原文出处:https://www.cnblogs.com/jimbo17/p/10491223.html  

0人推荐
随时随地看视频
慕课网APP