手记

lucene实战--打分算法没有那么难!

作为一个开放源代码项目,Lucene从问世之后,引发了开放源代码社群的巨大反响,程序员们不仅使用它构建具体的全文检索应用,而且将之集成到各种系统软件中去,以及构建Web应用,甚至某些商业软件也采用了Lucene作为其内部全文检索子系统的核心。apache软件基金会的网站使用了Lucene作为全文检索的引擎,IBM的开源软件eclipse的2.1版本中也采用了Lucene作为帮助子系统的全文索引引擎,相应的IBM的商业软件Web Sphere中也采用了Lucene。Lucene以其开放源代码的特性、优异的索引结构、良好的系统架构获得了越来越多的应用。

Lucene作为一个全文检索引擎,其具有如下突出的优点:

(1)索引文件格式独立于应用平台。Lucene定义了一套以8位字节为基础的索引文件格式,使得兼容系统或者不同平台的应用能够共享建立的索引文件。

(2)在传统全文检索引擎的倒排索引的基础上,实现了分块索引,能够针对新的文件建立小文件索引,提升索引速度。然后通过与原有索引的合并,达到优化的目的。

(3)优秀的面向对象的系统架构,使得对于Lucene扩展的学习难度降低,方便扩充新功能。

(4)设计了独立于语言和文件格式的文本分析接口,索引器通过接受Token流完成索引文件的创立,用户扩展新的语言和文件格式,只需要实现文本分析的接口。

(5)已经默认实现了一套强大的查询引擎,用户无需自己编写代码即使系统可获得强大的查询能力,Lucene的查询实现中默认实现了布尔操作、模糊查询(Fuzzy Search)、分组查询等等。

lucene的索引结构

 

1. 准备工作

  1.1 下载最新源码,https://github.com/apache/lucene-solr

  1.2 编译,按照说明,使用ant进行编译(我使用了ant eclipse)

  1.3.将编译后的文件导入到eclipse,sts或者idea中

2.新建测试类

    public void test() throws IOException, ParseException {
        Analyzer analyzer = new NGramAnalyzer();        // Store the index in memory:
        Directory directory = new RAMDirectory();        // To store an index on disk, use this instead:        //Path path = FileSystems.getDefault().getPath("E:\\demo\\data", "access.data");        //Directory directory = FSDirectory.open(path);
        IndexWriterConfig config = new IndexWriterConfig(analyzer);
        IndexWriter iwriter = new IndexWriter(directory, config);
        Document doc = new Document();
        String text = "我是中国人.";
        doc.add(new Field("fieldname", text, TextField.TYPE_STORED));
        iwriter.addDocument(doc);
        iwriter.close();        
        // Now search the index:
        DirectoryReader ireader = DirectoryReader.open(directory);
        IndexSearcher isearcher = new IndexSearcher(ireader);
        isearcher.setSimilarity(new BM25Similarity());        // Parse a simple query that searches for "text":
        QueryParser parser = new QueryParser("fieldname", analyzer);
        Query query = parser.parse("中国,人");
        ScoreDoc[] hits = isearcher.search(query, 1000).scoreDocs;        // Iterate through the results:
        for (int i = 0; i < hits.length; i++) {
          Document hitDoc = isearcher.doc(hits[i].doc);
          System.out.println(hitDoc.getFields().toString());
        }
        ireader.close();
        directory.close();
    }    
      private static class NGramAnalyzer extends Analyzer {
            @Override            protected TokenStreamComponents createComponents(String fieldName) {              final Tokenizer tokenizer = new KeywordTokenizer();              return new TokenStreamComponents(tokenizer, new NGramTokenFilter(tokenizer, 1, 4, true));
            }
          }

 其中,分词使用自定义的NGramAnalyzer,它继承自Analyzer,Analyzer分析文本,并将文本转换为TokenStream。详细如下:

/**
 * An Analyzer builds TokenStreams, which analyze text.  It thus represents a
 * policy for extracting index terms from text.
 * <p>
 * In order to define what analysis is done, subclasses must define their
 * {@link TokenStreamComponents TokenStreamComponents} in {@link #createComponents(String)}.
 * The components are then reused in each call to {@link #tokenStream(String, Reader)}.
 * <p>
 * Simple example:
 * <pre class="prettyprint">
 * Analyzer analyzer = new Analyzer() {
 *  {@literal @Override}
 *   protected TokenStreamComponents createComponents(String fieldName) {
 *     Tokenizer source = new FooTokenizer(reader);
 *     TokenStream filter = new FooFilter(source);
 *     filter = new BarFilter(filter);
 *     return new TokenStreamComponents(source, filter);
 *   }
 *   {@literal @Override}
 *   protected TokenStream normalize(TokenStream in) {
 *     // Assuming FooFilter is about normalization and BarFilter is about
 *     // stemming, only FooFilter should be applied
 *     return new FooFilter(in);
 *   }
 * };
 * </pre>
 * For more examples, see the {@link org.apache.lucene.analysis Analysis package documentation}.
 * <p>
 * For some concrete implementations bundled with Lucene, look in the analysis modules:
 * <ul>
 *   <li><a href="{@docRoot}/../analyzers-common/overview-summary.html">Common</a>:
 *       Analyzers for indexing content in different languages and domains.
 *   <li><a href="{@docRoot}/../analyzers-icu/overview-summary.html">ICU</a>:
 *       Exposes functionality from ICU to Apache Lucene. 
 *   <li><a href="{@docRoot}/../analyzers-kuromoji/overview-summary.html">Kuromoji</a>:
 *       Morphological analyzer for Japanese text.
 *   <li><a href="{@docRoot}/../analyzers-morfologik/overview-summary.html">Morfologik</a>:
 *       Dictionary-driven lemmatization for the Polish language.
 *   <li><a href="{@docRoot}/../analyzers-phonetic/overview-summary.html">Phonetic</a>:
 *       Analysis for indexing phonetic signatures (for sounds-alike search).
 *   <li><a href="{@docRoot}/../analyzers-smartcn/overview-summary.html">Smart Chinese</a>:
 *       Analyzer for Simplified Chinese, which indexes words.
 *   <li><a href="{@docRoot}/../analyzers-stempel/overview-summary.html">Stempel</a>:
 *       Algorithmic Stemmer for the Polish Language.
 * </ul>
 *
 * @since 3.1 */

 ClassicSimilarity是TFIDFSimilarity的封装,因TFIDFSimilarity是抽象方法,无法直接new出实例.这个算法是lucene早期的默认打分实现。

将测试类放入solr-lucene源码中,并进行debug,如果想要分析TFIDF算法,可以直接new ClassicSimilarity 然后放入IndexSearch,其它的类似。

3.算法介绍

新版的lucene使用了BM25Similarity作为默认打分实现。这里显式使用了BM25Similarity,算法详细。这里简要介绍一下:

其中:

   D即文档(Document),Q即查询语句(Query),score(D,Q)指使用Q的查询语句在该文档下的打分函数。

  IDF即倒排文件频次(Inverse Document Frequency)指在倒排文档中出现的次数,qi是Q分词后term

       其中,N是总的文档数目,n(qi)是出现分词qi的文档数目。

  f(qi,D)是qi分词在文档Document出现的频次

   k1和b是可调参数,默认值为1.2,0.75

  |D|是文档的单词的个数,avgdl 指库里的平均文档长度。

4.算法实现

  1.IDF实现

  单个IDF实现

  /** Implemented as <code>log(1 + (docCount - docFreq + 0.5)/(docFreq + 0.5))</code>. */
  protected float idf(long docFreq, long docCount) {    return (float) Math.log(1 + (docCount - docFreq + 0.5D)/(docFreq + 0.5D));
  }

   IDF的集合实现

  @Override  public final SimWeight computeWeight(float boost, CollectionStatistics collectionStats, TermStatistics... termStats) {    Explanation idf = termStats.length == 1 ? idfExplain(collectionStats, termStats[0]) : idfExplain(collectionStats, termStats);    float avgdl = avgFieldLength(collectionStats);    float[] oldCache = new float[256];    float[] cache = new float[256];    for (int i = 0; i < cache.length; i++) {
      oldCache[i] = k1 * ((1 - b) + b * OLD_LENGTH_TABLE[i] / avgdl);
      cache[i] = k1 * ((1 - b) + b * LENGTH_TABLE[i] / avgdl);
    }    return new BM25Stats(collectionStats.field(), boost, idf, avgdl, oldCache, cache);
  }  /**
   * Computes a score factor for a phrase.
   * 
   * <p>
   * The default implementation sums the idf factor for
   * each term in the phrase.
   * 
   * @param collectionStats collection-level statistics
   * @param termStats term-level statistics for the terms in the phrase
   * @return an Explain object that includes both an idf 
   *         score factor for the phrase and an explanation 
   *         for each term.   */
  public Explanation idfExplain(CollectionStatistics collectionStats, TermStatistics termStats[]) {    double idf = 0d; // sum into a double before casting into a float
    List<Explanation> details = new ArrayList<>();    for (final TermStatistics stat : termStats ) {
      Explanation idfExplain = idfExplain(collectionStats, stat);
      details.add(idfExplain);      idf += idfExplain.getValue();
    }    return Explanation.match((float) idf, "idf(), sum of:", details);
  }

 

2.k1和b参数实现

  public BM25Similarity(float k1, float b) {    if (Float.isFinite(k1) == false || k1 < 0) {      throw new IllegalArgumentException("illegal k1 value: " + k1 + ", must be a non-negative finite value");
    }    if (Float.isNaN(b) || b < 0 || b > 1) {      throw new IllegalArgumentException("illegal b value: " + b + ", must be between 0 and 1");
    }    this.k1 = k1;    this.b  = b;
  }  
  /** BM25 with these default values:
   * <ul>
   *   <li>{@code k1 = 1.2}</li>
   *   <li>{@code b = 0.75}</li>
   * </ul>   */
  public BM25Similarity() {    this(1.2f, 0.75f);
  }

  3.平均文档长度avgdl 计算

  /** The default implementation computes the average as <code>sumTotalTermFreq / docCount</code> */
  protected float avgFieldLength(CollectionStatistics collectionStats) {    final long sumTotalTermFreq;    if (collectionStats.sumTotalTermFreq() == -1) {      // frequencies are omitted (tf=1), its # of postings
      if (collectionStats.sumDocFreq() == -1) {        // theoretical case only: remove!
        return 1f;
      }
      sumTotalTermFreq = collectionStats.sumDocFreq();
    } else {
      sumTotalTermFreq = collectionStats.sumTotalTermFreq();
    }    final long docCount = collectionStats.docCount() == -1 ? collectionStats.maxDoc() : collectionStats.docCount();    return (float) (sumTotalTermFreq / (double) docCount);
  }

4.参数Weigh的计算

  /** Cache of decoded bytes. */
  private static final float[] OLD_LENGTH_TABLE = new float[256];  private static final float[] LENGTH_TABLE = new float[256];  static {    for (int i = 1; i < 256; i++) {      float f = SmallFloat.byte315ToFloat((byte)i);
      OLD_LENGTH_TABLE[i] = 1.0f / (f*f);
    }
    OLD_LENGTH_TABLE[0] = 1.0f / OLD_LENGTH_TABLE[255]; // otherwise inf

    for (int i = 0; i < 256; i++) {
      LENGTH_TABLE[i] = SmallFloat.byte4ToInt((byte) i);
    }
  }

  @Override  public final SimWeight computeWeight(float boost, CollectionStatistics collectionStats, TermStatistics... termStats) {
    Explanation idf = termStats.length == 1 ? idfExplain(collectionStats, termStats[0]) : idfExplain(collectionStats, termStats);    float avgdl = avgFieldLength(collectionStats);    float[] oldCache = new float[256];    float[] cache = new float[256];    for (int i = 0; i < cache.length; i++) {      oldCache[i] = k1 * ((1 - b) + b * OLD_LENGTH_TABLE[i] / avgdl);
      cache[i] = k1 * ((1 - b) + b * LENGTH_TABLE[i] / avgdl);
    }    return new BM25Stats(collectionStats.field(), boost, idf, avgdl, oldCache, cache);
  }

相当于 

 

5.WeightValue计算

    BM25Stats(String field, float boost, Explanation idf, float avgdl, float[] oldCache, float[] cache) {      this.field = field;      this.boost = boost;      this.idf = idf;      this.avgdl = avgdl;      this.weight = idf.getValue() * boost;      this.oldCache = oldCache;      this.cache = cache;
    }

    BM25DocScorer(BM25Stats stats, int indexCreatedVersionMajor, NumericDocValues norms) throws IOException {      this.stats = stats;      this.weightValue = stats.weight * (k1 + 1);      this.norms = norms;      if (indexCreatedVersionMajor >= 7) {
        lengthCache = LENGTH_TABLE;
        cache = stats.cache;
      } else {
        lengthCache = OLD_LENGTH_TABLE;
        cache = stats.oldCache;
      }
    }

 相当于

红色部分相乘

6.总的得分计算

    @Override    public float score(int doc, float freq) throws IOException {      // if there are no norms, we act as if b=0
      float norm;      if (norms == null) {
        norm = k1;
      } else {        if (norms.advanceExact(doc)) {          norm = cache[((byte) norms.longValue()) & 0xFF];
        } else {
          norm = cache[0];
        }
      }      return weightValue * freq / (freq + norm);
    }

其中norm是从cache里取的,cache是放入了

那么整个公式就完整的出来了

7.深入

   打分的数据来源于CollectionStatistics,TermStatistics及freq,那么它们是哪里得到的?

    SynonymWeight(Query query, IndexSearcher searcher, float boost) throws IOException {      super(query);      CollectionStatistics collectionStats = searcher.collectionStatistics(terms[0].field());//1      long docFreq = 0;      long totalTermFreq = 0;
      termContexts = new TermContext[terms.length];      for (int i = 0; i < termContexts.length; i++) {
        termContexts[i] = TermContext.build(searcher.getTopReaderContext(), terms[i]);        TermStatistics termStats = searcher.termStatistics(terms[i], termContexts[i]);//2
        docFreq = Math.max(termStats.docFreq(), docFreq);        if (termStats.totalTermFreq() == -1) {
          totalTermFreq = -1;
        } else if (totalTermFreq != -1) {
          totalTermFreq += termStats.totalTermFreq();
        }
      }
      TermStatistics[] statics=new TermStatistics[terms.length];      for(int i=0;i<terms.length;i++) {
        TermStatistics pseudoStats = new TermStatistics(terms[i].bytes(), docFreq, totalTermFreq,query.getKeyword());
        statics[i]=pseudoStats;
      }      
      this.similarity = searcher.getSimilarity(true);      this.simWeight = similarity.computeWeight(boost, collectionStats, statics);
    }

CollectionStatistics的来源

  /**
   * Returns {@link CollectionStatistics} for a field.
   * 
   * This can be overridden for example, to return a field's statistics
   * across a distributed collection.
   * @lucene.experimental   */
  public CollectionStatistics collectionStatistics(String field) throws IOException {    final int docCount;    final long sumTotalTermFreq;    final long sumDocFreq;    assert field != null;
    
    Terms terms = MultiFields.getTerms(reader, field);    if (terms == null) {
      docCount = 0;
      sumTotalTermFreq = 0;
      sumDocFreq = 0;
    } else {
      docCount = terms.getDocCount();
      sumTotalTermFreq = terms.getSumTotalTermFreq();
      sumDocFreq = terms.getSumDocFreq();
    }    return new CollectionStatistics(field, reader.maxDoc(), docCount, sumTotalTermFreq, sumDocFreq);
  }

TermStatistics的来源

  /**
   * Returns {@link TermStatistics} for a term.
   * 
   * This can be overridden for example, to return a term's statistics
   * across a distributed collection.
   * @lucene.experimental   */
  public TermStatistics termStatistics(Term term, TermContext context) throws IOException {    return new TermStatistics(term.bytes(), context.docFreq(), context.totalTermFreq(),term.text());
  }

freq的来源(tf)

    @Override    protected float score(DisiWrapper topList) throws IOException {      return similarity.score(topList.doc, tf(topList));
    }    
    /** combines TF of all subs. */
    final int tf(DisiWrapper topList) throws IOException {      int tf = 0;      for (DisiWrapper w = topList; w != null; w = w.next) {
        tf += ((TermScorer)w.scorer).freq();
      }      return tf;
    }

底层实现

Lucene50PostingsReader.BlockPostingsEnum

 @Override    public int nextDoc() throws IOException {      if (docUpto == docFreq) {        return doc = NO_MORE_DOCS;
      }      if (docBufferUpto == BLOCK_SIZE) {
        refillDocs();
      }

      accum += docDeltaBuffer[docBufferUpto];
      freq = freqBuffer[docBufferUpto];
      posPendingCount += freq;
      docBufferUpto++;
      docUpto++;

      doc = accum;
      position = 0;      return doc;
    }

8.总结

 BM25算法的全称是 Okapi BM25,是一种二元独立模型的扩展,也可以用来做搜索的相关度排序。本文通过和lucene的BM25Similarity的实现来深入理解整个打分公式。

在此基础之上,又分析了CollectionStatistics,TermStatistics及freq这些参数是如何计算的。

通过整个分析过程,我们想要定制自己的打分公式,只需要实现Similarity或者SimilarityBase类,然后实现业务上的打分公式即可。

注意:实现了自己的Similarity类后solr不能直接使用,需要将其放到org.apache.solr.search.similarities,使用时

配置managed-schema如下:
<similarity class="solr.DavidSimilarityFactory"/>  注意,路径不是org.apache.solr.search.similarities.DavidSimilarityFactory,而是solr.DavidSimilarityFactory。若使用org.apache.solr.search.similarities.DavidSimilarityFactory则报错:

classnotfound

 

参考文献

【1】https://en.wikipedia.org/wiki/Okapi_BM25

【2】https://www.elastic.co/cn/blog/found-bm-vs-lucene-default-similarity

【3】http://www.blogjava.net/hoojo/archive/2012/09/06/387140.html

【4】https://cwiki.apache.org/confluence/display/GEODE/Lucene+Internals

作者:         一天不进步,就是退步

原文出处:https://www.cnblogs.com/davidwang456/p/10439112.html  

1人推荐
随时随地看视频
慕课网APP