更改elasticsearch的score评分
在某些情况下,我们需要自定义score的分值,从而达到个性化搜索的目的。例如我们通过机器学习可以得到每个用户的特征向量、同时知道每个商品的特征向量,如何计算这两个特征向量的相似度?这个两个特征向量越高,评分越高,从而把那些与用户相似度高的商品优先推荐给用户。
插件源码解读
通过查看官网文档,运行一个脚步必须通过“ScriptEngine”来实现的。为了开发一个自定义的插件,我们需要实现“ScriptEngine”接口,并通过getScriptEngine()这个方法来加载我们的插件。ScriptEngine接口具体介绍见文献[1].下面通过官网给出的一个具体例子:
private static class MyExpertScriptEngine implements ScriptEngine { //可以命名自己在脚本api中使用的名称来引用这个脚本后端。
@Override
public String getType() { return "expert_scripts";
}
//核心方法,下面是通过java的lamada表达式来实现的
@Override
public <T> T compile(String scriptName, String scriptSource, ScriptContext<T> context, Map<String, String> params) { if (context.equals(SearchScript.CONTEXT) == false) { throw new IllegalArgumentException(getType() + " scripts cannot be used for context [" + context.name + "]");
} // we use the script "source" as the script identifier
if ("pure_df".equals(scriptSource)) { //通过p来获取参数params中的值,lookup得到文档中的的值
SearchScript.Factory factory = (p, lookup) -> new SearchScript.LeafFactory() { final String field; final String term;
{ if (p.containsKey("field") == false) { throw new IllegalArgumentException("Missing parameter [field]");
} if (p.containsKey("term") == false) { throw new IllegalArgumentException("Missing parameter [term]");
}
field = p.get("field").toString();
term = p.get("term").toString();
} @Override
public SearchScript newInstance(LeafReaderContext context) throws IOException {
PostingsEnum postings = context.reader().postings(new Term(field, term)); if (postings == null) { // the field and/or term don't exist in this segment, so always return 0
return new SearchScript(p, lookup, context) { @Override
public double runAsDouble() { return 0.0d;
}
};
} return new SearchScript(p, lookup, context) { int currentDocid = -1; @Override
public void setDocument(int docid) { // advance has undefined behavior calling with a docid <= its current docid
if (postings.docID() < docid) { try {
postings.advance(docid);
} catch (IOException e) { throw new UncheckedIOException(e);
}
}
currentDocid = docid;
} @Override
public double runAsDouble() { if (postings.docID() != currentDocid) { // advance moved past the current doc, so this doc has no occurrences of the term
return 0.0d;
} try { return postings.freq();
} catch (IOException e) { throw new UncheckedIOException(e);
}
}
};
} @Override
public boolean needs_score() { return false;
}
}; return context.factoryClazz.cast(factory);
} throw new IllegalArgumentException("Unknown script name " + scriptSource);
} @Override
public void close() { // optionally close resources
}
}通过分析上面的代码及结合业务需求,我们给出如下脚步:
脚步一
package com;
import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import org.apache.lucene.index.LeafReaderContext; import org.elasticsearch.script.ScriptContext; import org.elasticsearch.script.ScriptEngine; import org.elasticsearch.script.SearchScript;
import java.io.IOException; import java.util.*;
/** * \* Created with IntelliJ IDEA. * \* User: 0.0 * \* Date: 18-8-9 * \* Time: 下午2:32 * \* Description:为了得到个性化推荐搜索效果,我们计算用户向量与每个产品特征向量的相似度。 * 相似度越高,最后得到的分值越高,排序越靠前. * \ */
public class FeatureVectorScoreSearchScript implements ScriptEngine {
private final static Logger logger = LogManager.getLogger(FeatureVectorScoreSearchScript.class); @Override
public String getType() { return "feature_vector_scoring_script";
} @Override
public <T> T compile(String scriptName, String scriptSource, ScriptContext<T> context, Map<String, String> params) {
logger.info("The feature_vector_scoring_script is calculating the similarity of users and commodities"); if (!context.equals(SearchScript.CONTEXT)) { throw new IllegalArgumentException(getType() + " scripts cannot be used for context [" + context.name + "]");
} if("whb_fvs".equals(scriptSource)) {
SearchScript.Factory factory = (p, lookup) -> new SearchScript.LeafFactory() { // 对入参检查
final Map<String, Object> inputFeatureVector; final String field;
{ if (p.containsKey("field") == false) { throw new IllegalArgumentException("Missing parameter [field]");
} if(p.containsKey("inputFeatureVector") == false){ throw new IllegalArgumentException("Missing parameter [inputFeatureVector]");
}
field = p.get("field").toString();
inputFeatureVector = (Map<String,Object>) p.get("inputFeatureVector");
} @Override
public SearchScript newInstance(LeafReaderContext context) throws IOException { return new SearchScript(p, lookup, context) { @Override
public double runAsDouble() { if(lookup.source().containsKey(field)==true){ final Map<String, Double> productFeatureVector = (Map<String, Double>) lookup.source().get(field); return calculateVectorSimilarity(inputFeatureVector, productFeatureVector);
}else {
logger.info("The " + field + " is not exist in the product"); return 0.0D;
}
}
};
} @Override
public boolean needs_score() { return false;
}
}; return context.factoryClazz.cast(factory);
}throw new IllegalArgumentException("Unknown script name " + scriptSource);
} @Override
public void close() {
} //计算两个向量的相似度(cos)
public double calculateVectorSimilarity(Map<String, Object> inputFeatureVector , Map<String,Double> productFeatureVector){ double sumOfProduct = 0.0D; double sumOfUser = 0.0D; double sumOfSquare = 0.0D; if(inputFeatureVector!=null && productFeatureVector!=null){ for(Map.Entry<String, Object> entry: inputFeatureVector.entrySet()){ String dimName = entry.getKey(); double dimScore = Double.parseDouble(entry.getValue().toString()); double itemDimScore = productFeatureVector.get(dimName);
sumOfUser += dimScore*dimScore;
sumOfProduct += itemDimScore*itemDimScore;
sumOfSquare += dimScore*itemDimScore;
} if(sumOfUser*sumOfProduct==0.0D){ return 0.0D;
} return sumOfSquare / (Math.sqrt(sumOfUser)*Math.sqrt(sumOfProduct));
}else { return 0.0D;
}
}
}脚本二(fast-vector-distance)
/** * \* Created with IntelliJ IDEA. * \* User: 王火斌 * \* Date: 18-8-9 * \* Time: 下午2:32 * \* Description:为了得到个性化推荐搜索效果,我们计算用户向量与每个产品特征向量的相似度。
* 相似度越高,最后得到的分值越高,排序越靠前.
* \
*//**
package com;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
import org.apache.lucene.index.LeafReaderContext;
import org.elasticsearch.common.settings.Settings;
import org.elasticsearch.plugins.Plugin;
import org.elasticsearch.plugins.ScriptPlugin;
import org.elasticsearch.script.ScriptContext;
import org.elasticsearch.script.ScriptEngine;
import org.elasticsearch.script.SearchScript;
import org.apache.lucene.index.BinaryDocValues;
import org.apache.lucene.store.ByteArrayDataInput;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.nio.DoubleBuffer;
import java.util.*;
* This class is instantiated when Elasticsearch loads the plugin for the
* first time. If you change the name of this plugin, make sure to update
* src/main/resources/es-plugin.properties file that points to this class.
*/public final class FastVectorDistance extends Plugin implements ScriptPlugin { @Override
public ScriptEngine getScriptEngine(Settings settings, Collection<ScriptContext<?>> contexts) { return new FastVectorDistanceEngine();
}
private static class FastVectorDistanceEngine implements ScriptEngine {
private final static Logger logger = LogManager.getLogger(FastVectorDistance.class);
private static final int DOUBLE_SIZE = 8; double queryVectorNorm; @Override
public String getType() { return "feature_vector_scoring_script";
} @Override
public <T> T compile(String scriptName, String scriptSource, ScriptContext<T> context, Map<String, String> params) {
logger.info("The feature_vector_scoring_script is calculating the similarity of users and commodities"); if (!context.equals(SearchScript.CONTEXT)) { throw new IllegalArgumentException(getType() + " scripts cannot be used for context [" + context.name + "]");
} if ("whb_fvd".equals(scriptSource)) {
SearchScript.Factory factory = (p, lookup) -> new SearchScript.LeafFactory() { // The field to compare against
final String field; //Whether this search should be cosine or dot product
final Boolean cosine; //The query embedded vector
final Object vector;
Boolean exclude; //The final comma delimited vector representation of the query vector
double[] inputVector;
{ if (p.containsKey("field") == false) { throw new IllegalArgumentException("Missing parameter [field]");
} //Determine if cosine
final Object cosineBool = p.get("cosine");
cosine = cosineBool != null ? (boolean) cosineBool : true; //Get the field value from the query
field = p.get("field").toString(); final Object excludeBool = p.get("exclude");
exclude = excludeBool != null ? (boolean) cosineBool : true; //Get the query vector embedding
vector = p.get("vector"); //Determine if raw comma-delimited vector or embedding was passed
if (vector != null) { final ArrayList<Double> tmp = (ArrayList<Double>) vector;
inputVector = new double[tmp.size()]; for (int i = 0; i < inputVector.length; i++) {
inputVector[i] = tmp.get(i);
}
} else { final Object encodedVector = p.get("encoded_vector"); if (encodedVector == null) { throw new IllegalArgumentException("Must have 'vector' or 'encoded_vector' as a parameter");
}
inputVector = Util.convertBase64ToArray((String) encodedVector);
} //If cosine calculate the query vec norm
if (cosine) {
queryVectorNorm = 0d; // compute query inputVector norm once
for (double v : inputVector) {
queryVectorNorm += Math.pow(v, 2.0);
}
}
} @Override
public SearchScript newInstance(LeafReaderContext context) throws IOException { return new SearchScript(p, lookup, context) {
Boolean is_value = false; // Use Lucene LeafReadContext to access binary values directly.
BinaryDocValues accessor = context.reader().getBinaryDocValues(field); @Override
public void setDocument(int docId) { // advance has undefined behavior calling with a docid <= its current docid
try {
accessor.advanceExact(docId);
is_value = true;
} catch (IOException e) {
is_value = false;
}
} @Override
public double runAsDouble() { //If there is no field value return 0 rather than fail.
if (!is_value) return 0.0d; final int inputVectorSize = inputVector.length; final byte[] bytes; try {
bytes = accessor.binaryValue().bytes;
} catch (IOException e) { return 0d;
} final ByteArrayDataInput byteDocVector = new ByteArrayDataInput(bytes);
byteDocVector.readVInt(); final int docVectorLength = byteDocVector.readVInt(); // returns the number of bytes to read
if (docVectorLength != inputVectorSize * DOUBLE_SIZE) { return 0d;
} final int position = byteDocVector.getPosition(); final DoubleBuffer doubleBuffer = ByteBuffer.wrap(bytes, position, docVectorLength).asDoubleBuffer(); final double[] docVector = new double[inputVectorSize];
doubleBuffer.get(docVector); double docVectorNorm = 0d; double score = 0d; //calculate dot product of document vector and query vector
for (int i = 0; i < inputVectorSize; i++) {
score += docVector[i] * inputVector[i]; if (cosine) {
docVectorNorm += Math.pow(docVector[i], 2.0);
}
} //If cosine, calcluate cosine score
if (cosine) { if (docVectorNorm == 0 || queryVectorNorm == 0) return 0d;
score = score / (Math.sqrt(docVectorNorm) * Math.sqrt(queryVectorNorm));
} return score;
}
};
} @Override
public boolean needs_score() { return false;
}
}; return context.factoryClazz.cast(factory);
} throw new IllegalArgumentException("Unknown script name " + scriptSource);
} @Override
public void close() {}
}
}部署
通过maven来部署,具体部署步骤如下:
配置pom文件
加载依赖类,设置项目创建目录。
4.0.0
es-plugin
elasticsearch-plugin
1.0-SNAPSHOT<dependencies> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>6.1.1</version> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <artifactId>maven-assembly-plugin</artifactId> <version>2.3</version> <configuration> <appendAssemblyId>false</appendAssemblyId> <outputDirectory>${project.build.directory}/releases/</outputDirectory> <descriptors> <descriptor>${basedir}/src/assembly/plugin.xml</descriptor> </descriptors> </configuration> <executions> <execution> <phase>package</phase> <goals> <goal>single</goal> </goals> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.8</source> <target>1.8</target> </configuration> </plugin> </plugins> </build>
2.创建xml文件
<?xml version="1.0"?><assembly>
<id>plugin</id>
<formats>
<format>zip</format>
</formats>
<includeBaseDirectory>false</includeBaseDirectory>
<fileSets>
<fileSet>
<directory>${project.basedir}/src/main/resources</directory>
<outputDirectory>feature-vector-score</outputDirectory>
</fileSet>
</fileSets>
<dependencySets>
<dependencySet>
<outputDirectory>feature-vector-score</outputDirectory>
<useProjectArtifact>true</useProjectArtifact>
<useTransitiveFiltering>true</useTransitiveFiltering>
<excludes>
<exclude>org.elasticsearch:elasticsearch</exclude>
<exclude>org.apache.logging.log4j:log4j-api</exclude>
</excludes>
</dependencySet>
</dependencySets></assembly>3.创建plugin-descriptor.properties文件
description=feature-vector-similarity
version=1.0
name=feature-vector-score
site=${elasticsearch.plugin.site}
jvm=true
classname=com.FeatureVectorScoreSearchPlugin
java.version=1.8
elasticsearch.version=6.1.1
isolated=${elasticsearch.plugin.isolated}description:simple summary of the plugin
version(String):plugin’s version
name(String):the plugin name
classname(String):the name of the class to load, fully-qualified.
java.version(String):version of java the code is built against. Use the system property java.specification.version. Version string must be a sequence of nonnegative decimal integers separated by "."'s and may have leading zeros.
测试
创建索引
create_index = { "settings": { "analysis": { "analyzer": { # this configures the custom analyzer we need to parse vectors such that the scoring
# plugin will work correctly
"payload_analyzer": { "type": "custom", "tokenizer":"whitespace", "filter":"delimited_payload_filter"
}
}
}
}, "mappings": { "movies": { # this mapping definition sets up the metadata fields for the movies
"properties": { "movieId": { "type": "integer"
}, "tmdbId": { "type": "keyword"
}, "genres": { "type": "keyword"
}, "release_date": { "type": "date", "format": "year"
}, "@model": { # this mapping definition sets up the fields for movie factor vectors of our model
"properties": { "factor": { "type": "binary", "doc_values": true
}, "version": { "type": "keyword"
}, "timestamp": { "type": "date"
}
}
}
}}
}}查询
You can execute the script by specifying its lang as expert_scripts, and the name of the script as the script source:
{ "query": {
"function_score": { "query": { "match_all": {
}
}, "functions": [
{ "script_score": { "script": { "source": "whb_fvd", "lang" : "feature_vector_scoring_script", "params": { "field": "@model.factor", "cosine": true, "encoded_vector" :"v9EUmGAAAAC/6f9VAAAAAL/j+OOgAAAAv+m6+oAAAAA/lTSDIAAAAL/FdkTAAAAAv7rKHKAAAAA/0iyEYAAAAD/ZUY6gAAAAP7TzYoAAAAA/1K4IAAAAAD+yH9XgAAAAv6QRBSAAAAA/vRiiwAAAAL/mRhzgAAAAv9WxpiAAAAC/8YD+QAAAAL/jpbtgAAAAv+zmD+AAAAC/1eqtIAAAAA=="
}
}
}
}
]
}
}
}版本说明
在最近一年中,es版本迭代速度很快,上述插件主要使用了SearchScript类适用于v5.4-v6.4。在esv5.4以下的版本,主要使用ExecutableScript类。对于es大于6.4版本,出现了一个新类ScoreScript来实现自定义评分脚本。
项目详细见github
https://github.com/SnailWhb/elasticsearch_pulgine_fast-vector-distance
参考文献
[1]https://static.javadoc.io/org.elasticsearch/elasticsearch/6.0.1/org/elasticsearch/script/ScriptEngine.html
[2]https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-scripting-engine.html
[3]https://github.com/jiashiwen/elasticsearchpluginsample
[4]https://www.elastic.co/guide/en/elasticsearch/plugins/6.3/plugin-authors.html
作者:视野