手记

Python爬虫入门教程 37-100 云沃客项目外包网数据爬虫 scrapy

爬前叨叨

2019年开始了,今年计划写一整年的博客呢~,第一篇博客写一下 一个外包网站的爬虫,万一你从这个外包网站弄点外快呢,呵呵哒

数据分析

官方网址为 https://www.clouderwork.com/

进入全部项目列表页面,很容易分辨出来项目的分页方式

get异步请求

Request URL:https://www.clouderwork.com/api/v2/jobs/search?ts=1546395904852&keyword=&budget_range=&work_status=&pagesize=20&pagenum=3&sort=1&scope=
Request Method:GET
Status Code:200 OK

参数如下

    ts:1546395904852  # 时间戳
    keyword:   # 搜索关键字,查找全部,使用空即可
    budget_range:   # 暂时无用
    work_status:
    pagesize:20   # 每页数据量
    pagenum:3   # 页码
    sort:1   # 排序规则
    scope:

下面就是拼接请求了,确定一下 request 相关参数

Accept:application/json, text/javascript, */*; q=0.01Accept-Encoding:gzip, deflate, brAccept-Language:zh-CN,zh;q=0.9Connection:keep-aliveCookie:Host:www.clouderwork.comReferer:https://www.clouderwork.com/jobs?keyword=User-Agent:Mozilla/5.0 你自己的UA QQBrowser/10.3.3006.400X-Requested-With:XMLHttpRequest

爬虫采用scrapy
这个网站没有反爬措施,所以直接上就可以了

# -*- coding: utf-8 -*-import scrapyfrom scrapy import Requestimport timeimport jsonclass CloudeworkSpider(scrapy.Spider):
    name = 'cloudework'
    allowed_domains = ['www.clouderwork.com']
    start_url = 'https://www.clouderwork.com/api/v2/jobs/search?ts={times}&keyword=&budget_range=&work_status=&pagesize={pagesize}&pagenum={pagenum}&sort=1&scope='

    def start_requests(self):
        for page in range(1,353):            yield Request(self.start_url.format(times=time.time(),pagesize=20,pagenum=page))    def parse(self, response):
        json_data = json.loads(response.text)        for item in  json_data["jobs"]:            yield item

数据存储到 mongodb中,合计爬取到 7000+ 数据

数据分析

从mongdo读取数据

import pymongoimport pandas as pdfrom pandas import Series,DataFrameimport matplotlib.pyplot as plt

plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus']=False #用来正常显示负号# 连接数据库client = pymongo.MongoClient("localhost",27017)
cloud = client["cloud"]
collection = cloud["cloudework"]# 加载数据data = DataFrame(list(collection.find()))

结果显示为 [7032 rows x 35 columns]

查看数据基本情况

直接使用data.shape 可以查看一下数据的基本情况

查看一下工期的分布

periods = data.groupby(["period"]).size()

x = periods.index 
y = periods.values 
plt.figure()
plt.scatter(x,y, color="#03a9f4", alpha = 0.5) # 绘制图表plt.xlim((0, 360))
plt.ylim((0, 2000))
plt.xlabel("工期")
plt.ylabel("项目数")
plt.show()

可以看到数据散点集中在0~50天

过滤一下40天以内的数据

periods = data.groupby(["period"]).size().reset_index(name="count")

df = periods[periods["period"]<=40]

x = df["period"]
y = df["count"]

plt.figure()
plt.scatter(x,y,label='项目数折线',color="#ff44cc")
plt.title("工期对应项目数")
plt.xlim((0, 360))
plt.ylim((0, 500))
plt.show()

发现竟然有1天工期的任务,可以瞅瞅都是什么任务

periods = data.groupby(["period"]).size()
data[data["period"]==1][["name","period"]]

果然比较简单唉~~不过也没有多少钱,有个急活,1000¥

查看阅览量Top10

views = data["views_count"]
top10 = views.sort_values(ascending=False)[:10]

top10 = data[data.views_count.isin(top10.values)][["name","views_count","period","summary"]]
top10

查阅一下开发模式

看一下什么类型的项目比较多???数据上反应,Web网站和APP最多了,所以这方面的技能的大神么,可以冲一波了

作者:梦想橡皮擦

原文出处:https://www.cnblogs.com/happymeng/p/10407368.html  

0人推荐
随时随地看视频
慕课网APP