手记

Binder介绍

二. Binder 概述

简单介绍下什么是 Binder。Binder 是一种进程间通信机制,基于开源的 OpenBinder 实现;OpenBinder 起初由 Be Inc. 开发,后由 Plam Inc. 接手。从字面上来解释 Binder 有胶水、粘合剂的意思,顾名思义就是粘和不同的进程,使之实现通信。对于 Binder 更全面的定义,等我们介绍完 Binder 通信原理后再做详细说明。

1.1 为什么必须理解 Binder ?

作为 Android 工程师的你,是不是常常会有这样的疑问:

  • 为什么 Activity 间传递对象需要序列化?

  • Activity 的启动流程是什么样的?

  • 四大组件底层的通信机制是怎样的?

  • AIDL 内部的实现原理是什么?

  • 插件化编程技术应该从何学起?等等...

这些问题的背后都与 Binder 有莫大的关系,要弄懂上面这些问题理解 Bidner 通信机制是必须的。

我们知道 Android 应用程序是由 Activity、Service、Broadcast Receiver 和 Content Provide 四大组件中的一个或者多个组成的。有时这些组件运行在同一进程,有时运行在不同的进程。这些进程间的通信就依赖于 Binder IPC 机制。不仅如此,Android 系统对应用层提供的各种服务如:ActivityManagerService、PackageManagerService 等都是基于 Binder IPC 机制来实现的。Binder 机制在 Android 中的位置非常重要,毫不夸张的说理解 Binder 是迈向 Android 高级工程的第一步

为什么是 Binder ?

Android 系统是基于 Linux 内核的,Linux 已经提供了管道、消息队列、共享内存和 Socket 等 IPC 机制。那为什么 Android 还要提供 Binder 来实现 IPC 呢?主要是基于性能稳定性安全性几方面的原因。

性能

首先说说性能上的优势。Socket 作为一款通用接口,其传输效率低,开销大,主要用在跨网络的进程间通信和本机上进程间的低速通信。消息队列和管道采用存储-转发方式,即数据先从发送方缓存区拷贝到内核开辟的缓存区中,然后再从内核缓存区拷贝到接收方缓存区,至少有两次拷贝过程。共享内存虽然无需拷贝,但控制复杂,难以使用。Binder 只需要一次数据拷贝,性能上仅次于共享内存。

注:各种IPC方式数据拷贝次数,此表来源于Android Binder 设计与实现 - 设计篇

IPC方式数据拷贝次数
共享内存0
Binder1
Socket/管道/消息队列2

稳定性

再说说稳定性,Binder 基于 C/S 架构,客户端(Client)有什么需求就丢给服务端(Server)去完成,架构清晰、职责明确又相互独立,自然稳定性更好。共享内存虽然无需拷贝,但是控制负责,难以使用。从稳定性的角度讲,Binder 机制是优于内存共享的。

安全性

另一方面就是安全性。Android 作为一个开放性的平台,市场上有各类海量的应用供用户选择安装,因此安全性对于 Android 平台而言极其重要。作为用户当然不希望我们下载的 APP 偷偷读取我的通信录,上传我的隐私数据,后台偷跑流量、消耗手机电量。传统的 IPC 没有任何安全措施,完全依赖上层协议来确保。首先传统的 IPC 接收方无法获得对方可靠的进程用户ID/进程ID(UID/PID),从而无法鉴别对方身份。Android 为每个安装好的 APP 分配了自己的 UID,故而进程的 UID 是鉴别进程身份的重要标志。传统的 IPC 只能由用户在数据包中填入 UID/PID,但这样不可靠,容易被恶意程序利用。可靠的身份标识只有由 IPC 机制在内核中添加。其次传统的 IPC 访问接入点是开放的,只要知道这些接入点的程序都可以和对端建立连接,不管怎样都无法阻止恶意程序通过猜测接收方地址获得连接。同时 Binder 既支持实名 Binder,又支持匿名 Binder,安全性高。

基于上述原因,Android 需要建立一套新的 IPC 机制来满足系统对稳定性、传输性能和安全性方面的要求,这就是 Binder。

最后用一张表格来总结下 Binder 的优势:

优势描述
性能只需要一次数据拷贝,性能上仅次于共享内存
稳定性基于 C/S 架构,职责明确、架构清晰,因此稳定性好
安全性为每个 APP 分配 UID,进程的 UID 是鉴别进程身份的重要标志

Binder 跨进程通信原理

理解了 Linux IPC 相关概念和通信原理,接下来我们正式介绍下 Binder IPC 的原理。

3.1 动态内核可加载模块 && 内存映射

正如前面所说,跨进程通信是需要内核空间做支持的。传统的 IPC 机制如管道、Socket 都是内核的一部分,因此通过内核支持来实现进程间通信自然是没问题的。但是 Binder 并不是 Linux 系统内核的一部分,那怎么办呢?这就得益于 Linux 的动态内核可加载模块(Loadable Kernel Module,LKM)的机制;模块是具有独立功能的程序,它可以被单独编译,但是不能独立运行。它在运行时被链接到内核作为内核的一部分运行。这样,Android 系统就可以通过动态添加一个内核模块运行在内核空间,用户进程之间通过这个内核模块作为桥梁来实现通信。

在 Android 系统中,这个运行在内核空间,负责各个用户进程通过 Binder 实现通信的内核模块就叫 Binder 驱动(Binder Dirver)。

那么在 Android 系统中用户进程之间是如何通过这个内核模块(Binder 驱动)来实现通信的呢?难道是和前面说的传统 IPC 机制一样,先将数据从发送方进程拷贝到内核缓存区,然后再将数据从内核缓存区拷贝到接收方进程,通过两次拷贝来实现吗?显然不是,否则也不会有开篇所说的 Binder 在性能方面的优势了。

这就不得不通道 Linux 下的另一个概念:内存映射

Binder IPC 机制中涉及到的内存映射通过 mmap() 来实现,mmap() 是操作系统中一种内存映射的方法。内存映射简单的讲就是将用户空间的一块内存区域映射到内核空间。映射关系建立后,用户对这块内存区域的修改可以直接反应到内核空间;反之内核空间对这段区域的修改也能直接反应到用户空间。

内存映射能减少数据拷贝次数,实现用户空间和内核空间的高效互动。两个空间各自的修改能直接反映在映射的内存区域,从而被对方空间及时感知。也正因为如此,内存映射能够提供对进程间通信的支持。

3.2 Binder IPC 实现原理

Binder IPC 正是基于内存映射(mmap)来实现的,但是 mmap() 通常是用在有物理介质的文件系统上的。

比如进程中的用户区域是不能直接和物理设备打交道的,如果想要把磁盘上的数据读取到进程的用户区域,需要两次拷贝(磁盘-->内核空间-->用户空间);通常在这种场景下 mmap() 就能发挥作用,通过在物理介质和用户空间之间建立映射,减少数据的拷贝次数,用内存读写取代I/O读写,提高文件读取效率。

而 Binder 并不存在物理介质,因此 Binder 驱动使用 mmap() 并不是为了在物理介质和用户空间之间建立映射,而是用来在内核空间创建数据接收的缓存空间。

一次完整的 Binder IPC 通信过程通常是这样:

  1. 首先 Binder 驱动在内核空间创建一个数据接收缓存区;

  2. 接着在内核空间开辟一块内核缓存区,建立内核缓存区内核中数据接收缓存区之间的映射关系,以及内核中数据接收缓存区接收进程用户空间地址的映射关系;

  3. 发送方进程通过系统调用 copy_from_user() 将数据 copy 到内核中的内核缓存区,由于内核缓存区和接收进程的用户空间存在内存映射,因此也就相当于把数据发送到了接收进程的用户空间,这样便完成了一次进程间的通信。


0人推荐
随时随地看视频
慕课网APP