__thread是GCC内置的线程局部存储设施,__thread变量每一个线程有一份独立实体,各个线程的值互不干扰。可以用来修饰那些带有全局性且值可能变,但是各线程独立不干扰的变量;
只能修饰POD类型(类似整型指针的标量),不能修饰class类型,因为无法自动调用构造函数和析构函数;
可以用于修饰全局变量,函数内的静态变量,不能修饰函数的局部变量或者class的普通成员变量;
且__thread变量值只能初始化为编译器常量。
#include <pthread.h>#include <cstdio>#include <cstdlib>#include <assert.h>#include <stdint.h>__thread uint64_t pkey = 0;void run2( ){ FILE* fp = NULL; if( !pkey ) { char fName[128] = ""; sprintf( fName, "thread%lu.log", static_cast<unsigned long>( pthread_self() ) ); fp = fopen( fName, "w" ); pkey = reinterpret_cast<uint64_t>( fp ); }else fp = reinterpret_cast<FILE*>( pkey ); fprintf( fp, "hello __thread 2\n" ); return ; }void* run1( void* arg ){ FILE* fp = NULL; if( !pkey ) { char fName[128] = ""; sprintf( fName, "thread%lu.log", static_cast<unsigned long>( pthread_self() ) ); fp = fopen( fName, "w" ); pkey = reinterpret_cast<uint64_t>( fp ); }else fp = reinterpret_cast<FILE*>( pkey ); fprintf( fp, "hello __thread 1\n" ); run2(); return NULL; }int main(int argc, char const *argv[]){ char fName[128] = ""; sprintf( fName, "thread%lu.log", static_cast<unsigned long>( pthread_self() ) ); FILE* fp = fopen( fName, "w" ); pkey = reinterpret_cast<uint64_t>( fp ); fprintf( fp, "hello __thread\n" ); pthread_t threads[2]; pthread_create( &threads[0], NULL, run1, NULL ); pthread_create( &threads[1], NULL, run1, NULL ); pthread_join( threads[0], NULL ); pthread_join( threads[1], NULL ); return 0; }
pthread_key_t
参考:关键字:__thread & pthread_key_t
pthread_key_t 优于 __thread 从下面几个方面来说:
依赖 linux 环境的 libpthread, 而非 gcc 编译器可移植性增强
如上所示,可以认为对每个 pthread_key, 库内部提供了一个 __thread void* 接受 pthread_setspecific 设置的指针,从而可以指向 class 类型
pthread_key_t 可以作为函数的局部变量,也可以作为局部变量。
#include <pthread.h> // pthread_key_t, pthread_setspecific, pthread_getspecific, pthread_self // pthread_key_create, pthread_key_delete, pthread_create, pthread_join#include <iostream>#include <cstdio>#include <cstdlib>using namespace std; static pthread_key_t pkt;// 1, callback function to destroy resource associated with key// 2, the in_param is pthread_getspecific()// 3, gettid()是内核给线程(轻量级进程)分配的进程id,全局(所有进程中)唯一// 4, pthread_self()是在用户态实现的,获取的id实际上是主线程分配给子线程的线程描述符的地址而已,只是在当前进程空间中是唯一的。void destroy( void *arg ){ printf("exit at thread %d, fclose file \n", static_cast<int>( pthread_self() ) ); if( arg ) fclose( reinterpret_cast<FILE*>(arg) ); }// 5, pthread_getspecific() Return current value of the thread-specific data slot identified by KEY.void writeLog( const char* log ){ FILE* logHandle = reinterpret_cast<FILE*>( pthread_getspecific( pkt) ); fprintf( logHandle, "%s\n", log ); }// 6, pthread_setspecific Store POINTER in the thread-specific data slot identified by KEY void* work( void* arg){ FILE* logHandle = NULL; char fileName[128] = ""; sprintf( fileName, "Thread%d.log", static_cast<int>(pthread_self()) ); logHandle = fopen( fileName, "w"); pthread_setspecific( pkt, reinterpret_cast<void*>( logHandle ) ); writeLog( "Thread starting." ); }// 7, pthread_key_create( &pkt, destroy ) Create a key value identifying a location in the thread-specific //identifying 识别// data area. Each thread maintains a distinct thread-specific data area.// the destroy callback function will called with the key is dectroyed// 8, pthread_key_delete( ) detroy the key use callback function clear the resourceint main(int argc, char const *argv[]){ pthread_key_create( &pkt, destroy ); pthread_t pids[2] = {0}; pthread_create( &pids[0], NULL, work, NULL ); pthread_create( &pids[1], NULL, work, NULL ); pthread_join( pids[0], NULL ); pthread_join( pids[1], NULL ); pthread_key_delete( pkt ); printf("stop\n"); return 0; }
ThreadLocal
参考:关键字:__thread & pthread_key_t
对 pthread_key_t 进行了 RAII 的封装,使用更加安全。
#include <pthread.h>#include <boost/noncopyable.hpp> // noncopyable#include <boost/checked_delete.hpp> // check_delete#include <cstdio>#include <cstdlib>#include <string>#include <stdexcept>template<typename T>class ThreadLocal : public boost::noncopyable { public: typedef ThreadLocal<T>* pThreadLocal; ThreadLocal() { pthread_key_create( &pkey_, &ThreadLocal::destroy ); } ~ThreadLocal() { pthread_key_delete( pkey_ ); } T& value() { T* pvalue = reinterpret_cast<T*>( pthread_getspecific( pkey_ ) ); if( !pvalue ) { T* obj = new T(); pthread_setspecific( pkey_, reinterpret_cast<void*>( obj ) ); pvalue = obj; } return *pvalue; } private: static void destroy( void* arg ) { T* obj = reinterpret_cast<T*>( arg ); boost::checked_delete( obj ); } pthread_key_t pkey_; };class Logger{ public: Logger() { char fName[128] = ""; sprintf( fName, "log_%lu.log", static_cast<unsigned long>( pthread_self() ) ); fp = fopen( fName, "w" ); if( !fp ) throw std::runtime_error( std::string("can not create ") + fName ); } ~Logger() { fclose( fp ); } void log( const std::string& s ) { fprintf( fp, "%s\n", s.c_str() ); } private: FILE* fp; };void* run( void* arg ){ auto ptllogger = reinterpret_cast< ThreadLocal<Logger>::pThreadLocal>( arg); Logger& plogger = ptllogger->value(); plogger.log( "Hello thread local" ); }int main(){ ThreadLocal<Logger>::pThreadLocal p = new ThreadLocal<Logger>; Logger& plogger = p->value(); plogger.log( "Hello thread local" ); pthread_t threads[2] = {0}; pthread_create( &threads[0], NULL, run, reinterpret_cast<void*>( p ) ); pthread_create( &threads[1], NULL, run, reinterpret_cast<void*>( p ) ); pthread_join( threads[0], NULL ); pthread_join( threads[1], NULL ); delete p; }
附录
C++ 获取类中成员函数的函数指针
class A {public: static void staticmember(){cout<<"static"<<endl;} //static member void nonstatic(){cout<<"nonstatic"<<endl;} //nonstatic member virtual void virtualmember(){cout<<"virtual"<<endl;};//virtual member};int main(){ A a; //static成员函数,取得的是该函数在内存中的实际地址,而且因为static成员是全局的,所以不能用A::限定符 void (*ptrstatic)() = &A::staticmember; //nonstatic成员函数 取得的是该函数在内存中的实际地址 void (A::*ptrnonstatic)() = &A::nonstatic; //虚函数取得的是虚函数表中的偏移值,这样可以保证能过指针调用时同样的多态效果 void (A::*ptrvirtual)() = &A::virtualmember; //函数指针的使用方式 ptrstatic(); (a.*ptrnonstatic)(); (a.*ptrvirtual)(); }
static_cast, dynamic_cast, reinterpret_cast, const_cast
参见:c++ 数据类型转换: static_cast dynamic_cast reinterpret_cast const_cast
上行转换(把子类的指针或引用转换成基类表示), 下行转换(把基类指针或引用转换成子类表示)
类指针或引用的上行转换static_cast 和 dynamic_cast 都可以
类指针或引用的下行转换用dynamic_cast并且判断转换后是否为空
基本数据类型之间的转换用static_cast, 但是由于数值范围的不同,需要用户保证转换的安全性
不同类型之间的指针或引用的转换用reinterpret_cast,它的本质是对指向内存的比特位的重解释
消除数据的const、volatile、__unaligned属性,用const_cast
作者:呆呆的张先生
链接:https://www.jianshu.com/p/495ea7ce649b